Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Three Dimensional Simulation of Flow in an Axial Low Pressure Compressor at Engine Icing Operating Points

2015-06-15
2015-01-2132
Three-dimensional simulations of the Honeywell ALF502 low pressure compressor (sometimes called a booster) using the NASA Glenn code GlennHT have been carried out. A total of eight operating points were investigated. These operating points are at, or near, points where engine icing has been determined to be likely. The results of this study were used, in a companion paper, for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. In an effort to minimize computational effort, inviscid solutions with slip walls are produced. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. Comparisons of the results are made to other simplified analysis. An additional modification to the simulation process is also presented.
Technical Paper

Ice Particle Analysis of the Honeywell ALF502 Engine Booster

2015-06-15
2015-01-2131
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.63 ice accretion software. The inflow conditions for the two conditions were similar with the main differences being that the condition that produced the icing event was 6.8 K colder than the non-icing event case and the inflow ice water content (IWC) for the non-icing event case was 50% less than for the icing event case.
Technical Paper

Lagrangian Parcel Volume Method for Unsteady Particle Concentration

2011-06-13
2011-38-0005
A new technique is proposed for computing particle concentrations and fluxes with Lagrangian trajectories. This method calculates particle concentrations based on the volume of a parcel element, or cloud, at the flux plane compared against the initial volume and is referred to as the Lagrangian Parcel Volume (LPV) method. This method combines the steady-state accuracy of area-based methods with the unsteady capabilities of bin-based methods. The LPV method results for one-dimensional (1D) unsteady flows and linear two-dimensional (2D) steady flows show that a quadrilateral element shape composed of a single parcel (with four edge particles) is capable of accurately predicting particle concentrations. However, nonlinear 2D flows can lead to concave or crossed quadrilaterals which produce significant numerical errors.
Technical Paper

Particle Trajectory and Icing Analysis of the E3 Turbofan Engine Using LEWICE3D Version 3

2011-06-13
2011-38-0048
Particle trajectory and ice shape calculations were made for the Energy Efficient Engine (E₃) using the LEWICE3D Version 3 software. The particle trajectory and icing computations were performed using the new "block-to-block" collection efficiency method which has been incorporated into the LEWICE3D Version 3 software. The E₃ was developed by NASA and GE in the early 1980s as a technology demonstrator and is representative of a modern high bypass turbofan engine. The E₃ flow field was calculated using the NASA Glenn ADPAC turbomachinery flow solver. Computations were performed for the low pressure compressor of the E₃ for a Mach .8 cruise condition at 11,887 meters assuming a standard warm day for three drop sizes and two drop distributions typically used in aircraft design and certification. Particle trajectory computations were made for water drop sizes of 5, 20 and 100 microns.
Technical Paper

Icing Analysis of the NASA S3 Icing Research Aircraft Using LEWICE3D Version 2

2007-09-24
2007-01-3324
Results of an icing analysis of the NASA S3 Icing Research Aircraft will be presented along with the latest improvements to the LEWICE3D ice accretion program. The icing results include collection efficiency and ice shape calculations for the S3. Recent improvements to the roughness and ice density models, performance and accuracy of the overall collection efficiency algorithm, and to the user interface for the LEWICE3D program will be discussed.
Technical Paper

An Experimental Investigation of SLD Impingement on Airfoils and Simulated Ice Shapes

2003-06-16
2003-01-2129
This paper presents experimental methods for investigating large droplet impingement dynamics and for obtaining small and large water droplet impingement data. Droplet impingement visualization experiments conducted in the Goodrich Icing Wind Tunnel with a 21-in chord NACA 0012 airfoil demonstrated considerable droplet splashing during impingement. The tests were performed for speeds in the range 50 to 175 mph and with cloud median volumetric diameters in the range of 11 to 270 microns. Extensive large droplet impingement tests were conducted at the NASA Glenn Icing Research Tunnel (IRT). Impingement data were obtained for a range of airfoil sections including three 36-inch chord airfoils (MS(1)-0317, GLC-305, and NACA 652-415), a 57-inch chord Twin Otter horizontal tail section and 22.5-minute and 45-minute LEWICE glaze ice shapes for the Twin Otter tail section. Small droplet impingement tests were also conducted for selected test models.
Technical Paper

Collection Efficiency and Ice Accretion Characteristics of Two Full Scale And One 1/4 Scale Business Jet Horizontal Tails

2000-05-09
2000-01-1683
Collection efficiency and ice accretion calculations have been made for a series of business jet horizontal tail configurations using a three-dimensional panel code, an adaptive grid code, and the NASA Glenn LEWICE3D grid based ice accretion code. The horizontal tail models included two full scale wing tips and a 25% scale model. Flow solutions for the horizontal tails were generated using the PMARC panel code. Grids used in the ice accretion calculations were generated using the adaptive grid code ICEGRID. The LEWICE3D grid based ice accretion program was used to calculate impingement efficiency and ice shapes. Ice shapes typifying rime and mixed icing conditions were generated for a 30 minute hold condition. All calculations were performed on an SGI Octane computer. The results have been compared to experimental flow and impingement data.
X