Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Reduced Convective Combustion Chamber Wall Heat Transfer Losses of Hydrogen-Fueled Engines by Vortex-Stratified Combustion - Part 2: Numerical Analyses

2017-10-05
2017-01-9287
In this second of two parts, the fundamentals of convective wall heat transfer losses are elucidated in the context of the desired objective toward its reduction in a direct-injected, hydrogen-fueled internal combustion engine. A comparative, transient 2D CFD analysis evaluated at 4500 RPM between a combustion chamber design representing current practice and the here-introduced “vortex-stratified combustion” process finds an approximately 50% reduction in the peak convective flux with the latter.
Journal Article

Reduced Convective Combustion Chamber Wall Heat Transfer Losses of Hydrogen-Fueled Engines by Vortex-Stratified Combustion - Part 1: Background and Optical Engine Observations

2017-10-05
2017-01-9286
A vortex-stratified combustion process for hydrogen-fueled reciprocating internal combustion engines is introduced to increase the thermal efficiency by reducing the convective heat transfer losses to the surrounding walls during combustion. The process imposes a highly ordered rotational field upon the charge in a separate, transverse, cylindrically shaped combustion chamber by means of channels that connect with the main chamber enclosed by the engine cylinder and piston. Gaseous hydrogen is injected directly during the compression stroke, while air enters into the combustion chamber tangentially and preferentially along the circumference due to the Coandă effect. The two streams entrain one another and develop into a vigorous vortex by virtue of the chamber and channel geometries.
Journal Article

Design and Experimental Demonstration of a Seamless Automated Manual Transmission using an Eddy Current Torque Bypass Clutch for Electric and Hybrid Vehicles

2016-05-01
2015-01-9144
Electric Vehicles (EVs) with single-ratio gearbox provide high levels of smoothness, but using multi-speed gearbox can provide significant benefits in terms of vehicle acceleration, top speed, powertrain cost, mass, and energy consumption. In particular, Automated Manual Transmissions (AMTs) have characteristics of smooth shifts without torque interruption when coupled to a torque bypass clutch. However, conventional friction clutches are not best suited as torque bypass clutches because of their limited controllability and because large amount of heat must be dissipated to slow down the motor during gearshifts. This paper studies the feasibility of a seamless AMT architecture for EVs and Hybrid Electric Vehicles (HEVs) using an eddy current torque bypass clutch that is highly controllable, robust, low cost, and has no wearable parts.
Journal Article

Design of an Eddy Current Torque Bypass Clutch for Seamless Automated Manual Transmissions of Electric and Hybrid Vehicles

2015-07-01
2015-01-9143
This paper presents the design and experimental validation of an eddy current torque transfer clutch for use inside Automated Manual Transmissions (AMTs) to perform seamless gear upshifts. Electric vehicles (EVs) with a single-ratio gearbox may provide high levels of smoothness, but using a multi-speed gearbox provides significant benefits in terms of vehicle acceleration, top speed, powertrain cost, mass, and energy consumption. AMTs can provide smooth shifts without torque interruption when coupled to a normally-open torque bypass clutch. However, conventional dry friction clutches are not best suited for such torque bypass due to wear and controllability concerns, while wet clutches would decrease powertrain efficiency due to viscous losses. An eddy current clutch would be highly controllable, simple to manufacture, low-cost, robust, and do not wear compared to friction clutches.
X