Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Octane Response in a Downsized, Highly Boosted Direct Injection Spark Ignition Engine

2014-04-01
2014-01-1397
Increasingly strict government emissions regulations in combination with consumer demand for high performance vehicles is driving gasoline engine development towards highly downsized, boosted direct injection technologies. In these engines, fuel consumption is improved by reducing pumping, friction and heat losses, yet performance is maintained by operating at higher brake mean effective pressure. However, the in-cylinder conditions of these engines continue to diverge from traditional naturally aspirated technologies, and especially from the Cooperative Fuels Research engine used to define the octane rating scales. Engine concepts are thus key platforms with which to screen the influence of fundamental fuel properties on future engine performance.
Technical Paper

Influence of Laminar Burning Velocity on Performance of Gasoline Engines

2012-09-10
2012-01-1742
Laminar burning velocity is a fundamental combustion property of any fuel/air mixture. Formulating gasoline fuel blends having faster burning velocities can be an effective strategy for enhancing engine and vehicle performance. Formulation of faster burning fuels by changing the fuel composition has been explored in this work leading to a clear correlation between engine performance and fuel burning velocity. In principle a gasoline vehicle should be calibrated to give optimal ignition timing (also known as MBT - minimum spark advance for best torque) while at the same time avoiding any possible engine knock. However, modern downsized/boosted engines frequently tend to be limited by knock and the spark timing is retarded in respect of the optimum. In such scenarios, faster burning fuels can lead to a more optimum combustion phasing resulting in a more efficient energy transfer and hence a faster acceleration and better performance.
Technical Paper

Octane Sensitivity in Gasoline Fuels Containing Nitro-Alkanes: A Possible Means of Controlling Combustion Phasing for HCCI

2009-04-20
2009-01-0301
Addition of nitroalkanes to gasoline is shown to reduce the octane quality. The reduction in the Motor Octane Number (MON) is greater than the reduction in the Research Octane Number (RON). In other words addition of nitroalkanes causes an increase in octane sensitivity. The temperature of the compressed air/fuel mixture in the MON test is higher then in the RON test. Through chemical kinetic modelling, we are able to show how the temperature dependence of the reactions responsible for break-up of the nitroalkane molecule can lead to an increase in octane sensitivity. Results are presented from an Homogenous Charge Compression Ignition (HCCI) engine with a homogeneous charge in which the air intake temperature was varied. When the engine was operated on gasoline-like fuels containing nitroalkanes, it was observed that the combustion phasing was much more sensitive to the air intake temperature. This suggests a possible means of controlling combustion phasing for HCCI.
Technical Paper

Influence of Fuel Properties on Lubricant Oxidative Stability:Part 1 - Engine Tests

2005-10-24
2005-01-3839
Lubricant samples were aged on a SI bench engine that was run using ten different gasoline fuels. For each gasoline tested, the oxidative stability of the lubricant and the extent of engine wear was assessed in terms of a number of different parameters. Surprisingly, it was found that fuels containing higher levels of olefin (whether C8 olefin, or a C5/C6 olefin blend, or a catalytically cracked refinery stream) performed directionally better than a reference gasoline with low levels of aromatics and olefins. Fuels with a higher final boiling point and higher aromatic content, appeared to be associated with enhanced levels of sludge formation than the reference gasoline, but did not give rise to enhanced engine wear.
Technical Paper

The Available and Required Autoignition Quality of Gasoline - Like Fuels in HCCI Engines at High Temperatures

2004-06-08
2004-01-1969
In previous work it has been shown that the autoignition quality of a fuel at a given operating condition can be described by its Octane Index, OI = (1-K)RON - KMON; the larger the OI, the more the resistance to autoignition. Here RON and MON are, respectively, the Research and Motor Octane numbers of the fuel and K is a constant depending only on the pressure and temperature history of the fuel / air mixture in the engine prior to autoignition. The value of K is empirically established at a given operating condition by ranking fuels of different RON and MON and of different chemical composition for their ease of autoignition. Another important parameter at a given operating condition is OI0, the Octane Index of the fuel for which heat release is centred at TDC. In previous work K and OI0 were measured at different operating conditions and were related empirically to pressure and temperature of the mixture before autoignition and to engine speed and mixture strength.
X