Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

Accurate Cycle Predictions and Calibration Optimization Using a Two-Stage Global Dynamic Model

2017-03-28
2017-01-0583
With the introduction in Europe of drive cycles such as RDE and WLTC, transient emissions prediction is more challenging than before for passenger car applications. Transient predictions are used in the calibration optimization process to determine the cumulative cycle emissions for the purpose of meeting objectives and constraints. Predicting emissions such as soot accurately is the most difficult area, because soot emissions rise very steeply during certain transients. The method described in this paper is an evolution of prediction using a steady state global model. A dynamic model can provide the instantaneous prediction of boost and EGR that a static model cannot. Meanwhile, a static model is more accurate for steady state engine emissions. Combining these two model types allows more accurate prediction of emissions against time. A global dynamic model combines a dynamic model of the engine air path with a static DoE (Design of Experiment) emission model.
Technical Paper

Multiple Injection Strategies for Improved Combustion Stability under Stratified Part Load Conditions in a Spray Guided Gasoline Direct Injection (SGDI) Engine

2011-04-12
2011-01-1228
Compared to conventional homogeneous direct injection or port-fuel injected engines, the second generation, spray guided, direct injection engine (SGDI) has the potential for significantly improved fuel economy during part load stratified charge operation. Multiple fuel injection strategies can be utilised to increase the unthrottled operating range, leading to further improvements in fuel economy. However, careful optimisation of these strategies is essential to ensure that benefits are maintained whilst further minimising emissions within combustion stability limits and consumer driveability demands. The effects of multiple injection strategies upon fuel consumption, emissions and combustion stability were investigated in a single cylinder Ricardo Hydra engine with a spray guided combustion system. An outwardly opening piezoelectric actuated injector was employed. The fuel injection strategy utilised up to five injections per engine cycle.
Technical Paper

Gasoline Engine Operation with Twin Mechanical Variable Lift (TMVL) Valvetrain Stage 1: SI and CAI Combustion with Port Fuel Injection

2005-04-11
2005-01-0752
This paper describes the results of the first stage of an integrated experimental and modelling programme on a gasoline engine with Twin Mechanical Variable Lift (TMVL) capability. The engine used for this work was a modified version of a 4 cylinder, 2.0 litre BMW engine. The modified engine has the “Valvetronic” continuously variable lift valvetrain on both the inlet and exhaust valves and dual independent cam phasers with 60 crankshaft degrees of phasing authority. The Valvetronic system allows continuous variation of the valve lift from a minimum of 0.25 mm to a maximum of 9.7 mm.
Technical Paper

Emissions and Performance of a Carbon Fiber Reinforced Carbon Piston

2000-06-19
2000-01-1946
Carbon fiber reinforced carbon (CFRC) composites possess high specific strength, without loss of strength at high temperatures. The fiber architecture of these composites can be manipulated to yield tailored mechanical and thermal properties. Because of their light weight and the above attributes, these composites are attractive for pistons and other reciprocating parts in internal combustion engines. However, few tests have been performed to test these pistons for structural integrity and engine performance. Testing was undertaken to assess the basic suitability of this material for use in a spark-ignition engine. Of particular were basic mechanical function and combustion effects. With the CFRC piston cylinder, hydrocarbon emissions were higher, IMEP lower and the higher piston temperature induced detonation prematurely. The increase in hydrocarbon emissions was attributed to higher crevice volumes under hot operating conditions and fuel adsorption/desorption into the piston crown.
X