Refine Your Search

Topic

Search Results

Author:
Journal Article

A Framework for Virtual Testing of ADAS

2016-04-05
2016-01-0049
Virtual testing of advanced driver assistance systems (ADAS) using a simulation environment provides great potential in reducing real world testing and therefore currently much effort is spent on the development of such tools. This work proposes a simulation and hardware-in-the-loop (HIL) framework, which helps to create a virtual test environment for ADAS based on real world test drive. The idea is to reproduce environmental conditions obtained on a test drive within a simulation environment. For this purpose, a production standard BMW 320d is equipped with a radar sensor to capture surrounding traffic objects and used as vehicle for test drives. Post processing of recorded GPS raw data from the navigation system using an open source map service and the radar data allows an exact reproduction of the driven road including other traffic participants.
Technical Paper

A Simplified Fuel Efficient Predictive Cruise Control Approach

2015-04-14
2015-01-0296
Adaptive cruise control (ACC) systems allow a safe and reliable driving by adapting the velocity of the vehicle to velocity setpoints and the distance from preceding vehicles. This substantially reduces the effort of the driver especially in heavy traffic conditions. However, standard ACC systems do not necessarily take in account comfort and fuel efficiency. Recently some work has been done of the latter aspect. This paper extends previous works for CI engines by incorporating a prediction model of the surrounding traffic and a simplified control law capable for real time use in experiments. The prediction model itself uses sinusoidal functions as the traffic measurements often show periodic behavior and is adapted in every sample instant with respect to the predecessor's velocity. Furthermore, the controlled vehicle is forced to stay within a specific inter-vehicle distance corridor to avoid collisions and ensure safe driving.
Technical Paper

Active Limitation of Tire Wear and Emissions for Electrified Vehicles

2021-04-06
2021-01-0328
Eliminating toxic exhaust emissions, amongst them particulate matter (PM), is one of the driving factors behind the increasing use of electrified vehicles. However, it is frequently overseen that PM arise not only from combustion, but from non-exhaust traffic related causes as well; in particular from the vehicle brakes, tires and the road surface. Furthermore, as electrified vehicles weigh more and typically exhibit higher torques at low speeds, their non-exhaust emissions tend to be higher than for comparable conventional vehicles, especially those generated by tires. Fortunately, tire related emissions are directly related to tire wear, so that limiting tire wear can reduce these emissions as well. This can be accomplished by intelligently modulating the vehicle torque profile in real time, to limit the operation in conditions of higher tire wear.
Technical Paper

Adapted D-Optimal Experimental Design for Transient Emission Models of Diesel Engines

2009-04-20
2009-01-0621
Emission abatement is one of the main targets in engine development and design today. Modern turbocharged CRDI Diesel engines with variable turbine geometry (VTG) and exhaust gas recirculation (EGR) provide new degrees of freedom for air path control with enormous effects on emissions. Exploiting these degrees of freedom usually involves a huge calibration work, as sensors are available only for few quantities and dynamical models are mostly not available, so feedback or model based optimization is hardly possible. This paper presents a time efficient data based strategy to obtain such models yielding an accurate as well as robust emission model for nitrogen oxides (NOx) and particulate matter (PM) by means of design of experiment. The model output is generated by smoothly switching between local models, representing different engine operating points. An adapted D-optimal design of experiments strategy provides optimal data for model identification.
Technical Paper

Adaptive Inverse Torque Control of a Diesel Engine Using Adaptive Mapping Update

2003-03-03
2003-01-0397
Torque control is a basic element of engine control systems, in particular since it has become a standard interface for different functionalities. Torque control is also a critical requirement emission test cycle simulation on test benches. This torque control is usually reached by extensive, physical based modeling of the vehicle. This paper presents an approach to avoid this effort and to obtain a dramatic reduction of the parametrization work, by first determining an approximated model and then updating it online during operation. This model is than used for a stable inverse control. To handle model uncertainties and perturbation a correction feedback, with robustifying effect, is added to the control structure. This approach is detailed using data and measurements on a BMW M47D production diesel engine on a dynamic test bench.
Technical Paper

Adaptive SCR Model for MPC Control Including Aging Effects

2015-04-14
2015-01-1045
The focus in the development of modern exhaust after treatment systems, like the Diesel Oxidation Catalyst (DOC), the Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR), is to increase on one hand the oxidation rates of Carbon monoxide (CO), HC (Hydro Carbons) and NO (Nitrogen Oxide) and on the other hand the reduction rates of Particulate Matter (PM) and the NOx emissions to fulfill the more and more restricting requirements of the exhaust emission legislation. The simplest, practical most relevant way to obtain such a dosing strategy of a SCR system is the use of a nonlinear map, which has to be determined by extensive calibration efforts. This feedforward action has the advantage of not requiring a downstream NOx sensor and can achieve high conversion efficiency under steady-state operating conditions for nominal systems.
Journal Article

Analysis and Choice of Input Candidates for a Virtual NOx Sensor by a Mutual Information Approach

2016-04-05
2016-01-0957
Abatement and control of emissions from passenger car combustion engines have been in the focus for a long time. Nevertheless, to address upcoming real-world driving emission targets, knowledge of current engine emissions is crucial. Still, adequate sensors for transient emissions are seldom available in production engines. One way to target this issue is by applying virtual sensors which utilize available sensor information in an engine control unit (ECU) and provide estimates of the not measured emissions. For real-world application it is important that the virtual sensor has low complexity and works under varying conditions. Naturally, the choice of suitable inputs from all available candidates will have a strong impact on these factors. In this work a method to set up virtual sensors by means of design of experiments (DOE) and iterative identification of polynomial models is augmented with a novel input candidate selection strategy.
Journal Article

Comparison of Virtual and Physical NOx-Sensors for Heavy Duty Diesel Engine Application

2010-04-12
2010-01-1296
Nitrogen oxide (NOx) sensing is required both for on-board diagnosis and optimal selective catalytic reduction (SCR)-catalyst control in heavy duty diesel engines. This can be accomplished either by physical solid-state sensors, or by so-called virtual sensors, which estimate the value of the target quantity using other states by means of a model. Both approaches have advantages and disadvantages. This paper resumes the derivation and the identification of a virtual sensor based on a polynomial structure and optimal experimental design methods and compares its performance to the one of a production physical solid state sensor. The virtual sensor is compared with a commercially available solid-state sensor in terms of accuracy (stationary as well as dynamic) and operation limits.
Technical Paper

Control Oriented Crank Angle Based Analysis of Soot Dynamics During Diesel Combustion

2010-10-25
2010-01-2105
This paper presents a detailed optical and thermodynamic analysis of effects which influences the soot formation and oxidation process during Diesel combustion. To measure the actual soot concentration over crank angle an optical sensor was installed on the engine. In combination with a thermodynamic engine process calculation, based on the measured cylinder pressure, several important effects are analyzed and described in detail. The main focus of the paper is to produce knowledge on how soot dynamics is influenced by changed engine control unit (ECU) calibration parameters. A modern 4 cylinder production car Diesel engine was used for the studies, which offers a lot of opportunities to influence combustion by varying injection timing and air path ECU parameters. As a consequence discussion is done on how the analyzed effects are treated by published 0-dimensional simulation models with focus on later control and optimization application.
Technical Paper

DOC Temperature Control for Low Temperature Operating Ranges with Post and Main Injection Actuation

2013-04-08
2013-01-1580
In a typical diesel engine exhaust aftertreatment system consisting of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF) and a selective catalytic reduction (SCR) system the main purpose of the DOC, besides the oxidation of CO to CO₂, is the oxidation of NO to NO₂. The NO to NO₂ conversion is an essential contribution for the downstream SCR system because the fast SCR reaction which provides the highest conversion rates of NOx to H₂O and N₂ works well only under roughly equal concentrations of NO and NO₂. The typical amount of NO to NOx ratio produced by the engine is about 0.95, hence the DOC is necessary to decrease this coefficient close to 0.50. Due to the temperature dependency of the DOC reaction mechanism the oxidation of NO to NO₂ takes only place sufficiently if the temperature of the DOC is higher than 200°C, which, however, cannot be reached during low engine speed and low load situations.
Journal Article

Data Driven Estimation of Exhaust Manifold Pressure by Use of In-cylinder Pressure Information

2013-04-08
2013-01-1749
Although the application of cylinder pressure sensors to gain insight into the combustion process is not a novel topic itself, the recent availability of inexpensive in-cylinder pressure sensors has again prompted an upcoming interest for the utilization of the cylinder pressure signal within engine control and monitoring. Besides the use of the in-cylinder pressure signal for combustion analysis and control the information can also be used to determine related quantities in the exhaust or intake manifold. Within this work two different methods to estimate the pressure inside the exhaust manifold are proposed and compared. In contrary to first principle based approaches, which may require time extensive parameterization, alternative data driven approaches were pursued. In the first method a Principle Component Analysis (PCA) is applied to extract the cylinder pressure information and combined with a polynomial model approach.
Technical Paper

Development of In-Situ, Full Stream, Laser Induced Incandescence Technique for Measurement of Transient Soot Emissions

2013-09-08
2013-24-0169
The Laser Induced Incandescence technique (LII) is a sensitive optical method for reliable spatially and temporally resolved measurement of particulate matter (PM) concentration. This technique appears to be suitable for measurement of fast transient PM emissions, from diesel engines, which forms the main fraction of total emissions during standardized test cycles. However, the existing commercial LII devices require modifications in the exhaust gas flow, dilution, sampling cell, or it measure only in a partial stream. This article presents the development of a laser based optical setup - LII for rapid in-situ measurement of PM concentrations during the combustion process of a diesel production engine. The presented LII setup is suitable for direct in-situ, full stream, measurements of soot emissions without needs of dilution or a sampling cell.
Technical Paper

Driver-Control Interaction of a Curve-Safe Braking Control for Motorcycles

2007-04-16
2007-01-0864
Two-wheel vehicles are becoming continuously more important in Europe, but their spread is accompanied by an increase in security concerns due a number of reasons. These include stability problems during braking, and in particular curve braking, which is much more critical than in 4-wheel vehicles. These stability problems are strongly influenced by the behavior of the driver, in particular by his braking and steering activity. In this work we present a curve-safe ABS control, and analyze the role of the driver by a simulation model. It turns out that the demands on the driver in terms of stability control vary strongly with the braking behavior.
Technical Paper

Dynamic Injection Adaptation by Input Shaping for Low NOx Emissions during Transients

2014-04-01
2014-01-1161
Especially in view of more and more stringent emission legislation in passenger cars it is required to reduce the amount of pollutants. In the case of Diesel engines mainly NOx and PM are emitted during engine operation. The main influence factors for these pollutants are the in-cylinder oxygen concentration and the injected fuel amount. Typically the engine control task can be divided into two separate main parts, the fuel and the air system. Commonly air system control, consisting of a turbocharger and exhaust gas recirculation control, is used to provide the required amount of oxygen and address the emission targets, whereas the fuel is used to provide the desired torque. Especially in transient maneuvers the different time scales of both systems can lead to emission peaks which are not desired. Against this background in this work instead of the common way to address the air system, the fuel system is considered to reduce emission peaks during transients.
Technical Paper

Dynamical Drag Torque Adaptation for Combustion Engines Using High Gain Observer

2005-04-11
2005-01-0065
Drag torque compensation is a part of the control units of modern gasoline and diesel engines. To achieve it, a characteristic drag torque curve as a function of the engine speed is usually saved in the ECU. Since the drag torque will not be constant during an engine's lifetime, this curve must be adapted. This paper proposes an approach to adapt the drag torque curve. The goal is achieved using a high gain observer known as a Kalman filter. The proposed method combines detection of drag torque curve errors and adaptation of the drag torque curve in one step. The effects of variable geometry turbochargers are included in the overall curve by an extension of the basic algorithm. The performance of the method is shown using data and measurements on a BMW M47D engine. As the measurements confirm, the proposed method works consistently and correctly.
Technical Paper

Dynamical Nonlinear Particulate Matter Estimation Based on Laser Induced Incandescence Measurements

2013-09-08
2013-24-0180
Measurements of transient emissions become more important due to the increasing contribution of transient operation to the total tail pipe emissions. While for many quantities measurement devices with response time in the range of few milliseconds exist, the same is not true for particulate matter(PM). Pulsed Laser Induced Incandescence (LII) is widely used in experimental setups and may offer a viable approach also for production engines, but the specific nature of LII raises doubts on the quantitative precision achievable by the method, especially in transient operation. Indeed, there are two main problems in particular for dynamic measurements. On one side, the emitted laser power must be high enough to excite a sufficiently large number of particles within the observed area, but not as high to destroy them, and varying engine operating conditions imply changes in the number and size distribution of the particles as well.
Technical Paper

Estimation of the Mean Value Engine Torque Using an Extended Kalman Filter

2005-04-11
2005-01-0063
Modern ECUs are usually torque orientated. As a consequence, a good estimation of the real mean value output torque of the engine is needed. As torque measurement is mostly too expensive, the ECUs usually include torque estimation algorithms, which, however, are usually quite simple and give a poor estimate of dynamic effects. In this paper we present a simple but effective method to estimate the engine torque based on an extended Kalman filter used in combination with a polynomial engine model and a simple friction model. Using only standard measurements or ECU internal variables, like fuel mass, spark advance for gasoline engines and injection timing for diesel engines, pressure of the intake manifold and speed are enough to get a good estimation value for the mean value torque of the engine. In this paper we also discuss the algorithm of estimating the mean value torque of the engine that is mounted in a vehicle, where usually the load torque is not known.
Journal Article

Evaluation of Virtual NOx Sensor Models for Off Road Heavy Duty Diesel Engines

2012-04-16
2012-01-0358
NOx and PM are the critical emissions to meet the legislation limits for diesel engines. Often a value for these emissions is needed online for on-board diagnostics, engine control, exhaust aftertreatment control, model-based controller design or model-in-the-loop simulations. Besides the obvious method of measuring these emissions, a sensible alternative is to estimate them with virtual sensors. A lot of literature can be found presenting different modeling approaches for NOx emissions. Some are very close to the physics and the chemical reactions taking place inside the combustion chamber, others are only given by adapting general functions to measurement data. Hence, generally speaking, there is not a certain method which is seen as the solution for modeling emissions. Finding the best model approach is not straightforward and depends on the model application, the available measurement channels and the available data set for calibration.
Technical Paper

Fast Hybrid Sensor for Soot of Production CI Engines

2017-09-04
2017-24-0137
During transients, engines tend to produce substantially higher peak emissions like soot - the main fraction of particular matter (PM) - which are the longer the more important as the steady state emissions are better controlled. While Diesel particulate filters are normally able to block them, preventing their occurrence would of course be more important. In order to achieve this goal, however, they must be measurable. While for most emissions commercial sensors of sufficient speed and performance are available, the same is not true for PMs, especially for production engines. Against this background, in the last years the possible use of a full stream 50Hz sensor based on Laser Induced Incandescence (LII) was investigated, and the results were very encouraging, showing that the sensor could recognize transient changes undetected by conventional measurement systems (like the AVL Opacimeter) but confirmed by the analysis of combustion.
Journal Article

Fast Oxygen Based Transient Diesel Engine Operation

2009-04-20
2009-01-0622
Due to the advancements in passenger car Diesel engine design, the contribution of transient emission spikes has become an important fraction of the total emissions during the standardized test cycles, hence the interest of this work on dynamical engine operation, in particular on the improvement of NOX and PM emissions. This paper proposes to use a UEGO sensor (universal exhaust gas oxygen sensor) in the upstream of the turbine in combination with a Kalman filter to estimate the target quantities, namely in-cylinder oxygen concentration before and after combustion. This information is used to define the fuel injection as well as the values of the air path actuators. Test bench measurements with a production Diesel engine are presented, where the oxygen based approach is compared to the standard calibration during a fast load increase. It is shown that the torque response could be maintained while NOX as well as PM emission peaks were reduced significantly.
X