Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

A Comparison Study on Head Injury Risk in Car-to-Pedestrian Collisions in Changsha and Hannover

2010-04-12
2010-01-1167
Vehicle traffic accidents have been extensively studied in various countries, but any differences in traffic accidents the studied areas have not yet been adequately investigated. This paper aims to make a comparison study of head injury risks and kinematics of adult pedestrian accidents in Changsha, China, and Hannover, Germany, as well as correlate calculated physical parameters with injuries observed in real-world accidents of the two cities. A total of 20 passenger cars versus adult pedestrian accidents were collected from the two areas of study, including 10 cases from Changsha and 10 cases from Hannover. Virtual accident reconstructions using PC-Crash and MADYMO software were performed. The in-depth study focused on head injury risks while kinematics were conducted using statistical approaches. The results of the analysis of the Chinese data were compared with those of the German data.
Technical Paper

A Study of Car Safety Performance in Side Impact Using Human Head FE Model

2009-06-09
2009-01-2281
This research investigated the safety performance of a passenger car in side collisions, using a side air-curtain protective device to minimize the risk of head-brain injuries. Traumatic brain injury in passenger vehicle side collisions is one of the common injury patterns with fatal consequences in traffic accidents. A dummy head has limited capability to evaluate vehicle safety performance with detailed injury related physical parameters. Continuous development of mathematical models has provided efficient tools for assessing the safety performance of a protective device. A validated head-brain FE model and air-curtain model was employed to simulate the impact responses of head-brain to B-pillar and further quantify the effect of the air-curtain on the protection of the human head in side collisions. A parametric study was conducted using the design of experiment approach. The kinematics of a head impacting the B-pillar and the air-curtain are presented.
Technical Paper

Assessment of a Safe Bumper System Using a Pedestrian Lower Limb FE Model

2009-06-09
2009-01-2269
Lower limb injuries are common result of car to pedestrian impacts. A reversible bumper system was developed to reduce the risk of such injuries. In order to improve the protective performance of the bumper system, it was necessary to investigate the efficiency of the bumper system at different impact conditions and design configurations. In this study, the protective performance of the reversible bumper system was assessed by finite element (FE) modeling of lower limb impacts. The FE model of a production car front was developed and validated. The FE model of the reversible bumper system was then developed and replaced the original bumper in the car front model. A human lower limb FE model was used to evaluate the protective performance of the reversible bumper system. The effects of the bumper design parameters on protective performance were investigated by using the statistical method of factorial experiment design.
Technical Paper

A Study on Head Injury Risk in Car-to-Pedestrian Collisions Using FE-Model

2009-06-09
2009-01-2263
Head injury is quite frequently occurred in car-to-pedestrian collisions, which often places an enormous burden to victims and society. To address head protection and understand the head injury mechanisms, in-depth accident investigation and accident reconstructions were conducted. A total of 6 passenger-cars to adult-pedestrian accidents were sampled from the in-depth accident investigation in Changsha China. Accidents were firstly reconstructed by using Multi-bodies (MBS) pedestrian and car models. The head impact conditions such as head impact velocity; position and orientation were calculated from MBS reconstructions, which were then employed to set the initial conditions in the simulation of a head model striking a windshield using Finite Element (FE) head and windshield models. The intracranial pressure and stress distribution of the FE head model were calculated and correlated with the injury outcomes.
X