Refine Your Search

Topic

Affiliation

Search Results

Author:
Technical Paper

Second-Life of Electric Vehicle Batteries from a Circular Economy Perspective: A Review and Future Direction

2023-08-28
2023-24-0151
The second-life use of batteries from electric vehicles (EV) represents an excellent and cost-effective option for energy storage applications, including the control of fluctuations in energy supply and demand or in combination with solar photovoltaic and wind turbine. Indeed, these batteries are normally replaced from EV use before the end of their service life, when they still have 70-80% of the original capacity. Depending on the cell chemistry and the specific design, such batteries can still be employed in less stressful applications than the automotive one, including commercial, residential, and industrial applications. With the aim to promote the transition to a circular closed-loop economy for spent traction batteries, this study consists in a systematic literature review of available options for reusing EV batteries as a storage system in a factory environment, highlighting benefits and critical aspects.
Technical Paper

Cooling Performance of an Modified R744 Air Conditioning System with Vortex Tube and Internal Heat Exchanger for an Electric Vehicle

2021-09-05
2021-24-0098
Thermal comfort in the vehicle cabin environment is an important factor for passengers of both internal combustion engines and electric vehicles. Heating, Ventilation and Air Conditioning (HVAC) is a critical system for electric vehicles (EVs) as it is the second most power consumer after electric motor. Novel solutions dedicated to EV, including thermoelectric air conditioning (AC) modules, vapor compression refrigeration (VCR), cycle positive temperature coefficient (PTC) heater as well as heat pumps (HP), are being investigated to maintain a stable and comfortable interior environment under hot and cold weather conditions. At present, the mostly dominated automotive AC systems are those using R134a refrigerant characterized by high global warming potential. Therefore, an innovative and ecofriendly AC system design still must be developed to supply sufficient cooling or heating capacity while minimizing the influence of the AC system on driving ranges and environmental performance.
Technical Paper

Sizing and Optimization of a Vortex Tube for Electric Vehicle HVAC Purposes

2021-09-05
2021-24-0099
In the recent past, an always increasing attention have been addressed to the definition and optimization of the HVAC system for fully electric vehicles. The new vehicle layouts and the different operating temperatures of the whole powertrain ask for a re-thinking of the HVAC concept for the modern architectures. In this ballpark, the possibility to deal with a compact and efficient apparatus without moving parts and capable to provide both cold and hot fluxes is really attractive. This is the reason why this work deals with the design and optimization of a vortex tube for automotive applications. Such a component, in fact, is capable to separate a highly swirled flow in two different branches, a cold one and a hot one (one inlet - two outlets). The balance in between the two obtained mass flows can be simply realized via ruling the backpressure at the hot side, with keeping constant the cold one.
Technical Paper

Retrofit of a Heavy-Duty Diesel Truck: Comparison of Parallel and Series Hybrid Architectures with Waste Heat Recovery

2020-09-27
2020-24-0015
This paper describes and compares different powertrain configurations for the retrofit of a heavy-duty Class 8 truck, powered by a 12.6 liters diesel engine. The engine is firstly equipped with an electrification-oriented organic Rankine cycle (ORC) system and then coupled to a traction electric machine into a hybrid powertrain. An electrification-oriented ORC system can produce enough energy to cover the ancillary loads, which in long-haul applications for freight transportation are quite demanding. Nevertheless, only powertrain hybridization can achieve significant improvements in the overall system efficiency. Both systems may thus be implemented in the same vehicle, but an efficiency improvement is guaranteed only if the system is carefully managed so as to reach a trade-off between the requirements and potential benefits of the ORC system and those of the hybrid powertrain.
Technical Paper

A Coupled Lattice Boltzmann-Finite Volume Method for the Thermal Transient Analysis of an Air-Cooled Li-Ion Battery Module for Electric Vehicles with Porous Media Insert Modeled at REV Scales

2019-10-07
2019-24-0242
Lithium ion batteries are the most promising candidates for electric and hybrid electric vehicles, owe to their ability to store higher electrical energy. As a matter of fact, in automotive applications, these batteries undergo frequent and fast charge and discharge processes, which are associated to internal heat generation, which in turns causes temperature increase. Thermal management is therefore crucial to keep temperature in an appropriate level for safe operation and battery wear prevention. In a recent work authors have already demonstrated the capabilities of a coupled lattice Boltzmann-Finite Volume Method to deal with thermal transient of a three-dimensional air-cooled Li-ion battery at different discharging rates and Reynolds numbers. Here, in order to improve discharge thermal capabilities and reduce temperature levels of the battery itself, a layer of porous medium is placed in contact with the battery so to replace a continuum solid aluminum layer.
Technical Paper

Environmental Analysis Based on Life Cycle Assessment: An Empirical Investigation on the Conventional and Hybrid Powertrain

2019-10-07
2019-24-0245
The Life Cycle Sustainability Assessment (LCA) methodology is today considered as a crucial paradigm with multiple levels of analysis, including the economic, social and environmental aspects. In this scenario, the purpose of the present research is to carry out an accurate and extensive LCA based analysis to compare the environmental impact, between conventional gasoline and hybrid vehicle powertrains. Two different powertrain scenarios were considered maintaining the same vehicle chassis. The performed analysis concerned resources and energy consumption as well as pollutant emission of each process, evaluating the impact of powertrain production, the vehicle use phase, and powertrain end of life scenarios. A large set of indicators - including human toxicity, eutrophication, and acidification - was considered. The study indicates that the potential of electrified vehicles basically depends on efficient production and recycling of the battery.
Technical Paper

Multidimensional Modeling of SCR Systems via the Lattice Boltzmann Method

2019-09-09
2019-24-0048
In this paper, we deploy a novel, multidimensional approach to simulate SCR reactors across physical scales. For the first time, a full 3D Lattice Boltzmann (LB) solver is developed, able to accurately capture the fluid dynamic phenomena taking place inside SCR reactors, as well as the catalytic conversion of NOx. The influence of engine load on exhaust gas mass flow rate and catalytic converter activity is taken into account. The proposed approach is computationally light and the results prove the reliability and versatility of the LB Method for the simulation of the complex phenomena that take place inside the after-treatment devices.
Technical Paper

Hybrid URANS/LES Turbulence Modeling for Spray Simulation: A Computational Study

2019-04-02
2019-01-0270
Turbulence modeling for fuel spray simulation plays a prominent role in the understanding of the flow behavior in Internal Combustion Engines (ICEs). Currently, a lot of research work is actively spent on Large Eddy Simulation (LES) turbulence modeling as a replacement option of standard Reynolds averaged approaches in the Eulerian-Lagrangian spray modeling framework, due to its capability to accurately describe flow-induced spray variability and to the lower dependence of the results on the specific turbulence model and/or modeling coefficients. The introduction of LES poses, however, additional questions related to the implementation/adaptation of spray-related turbulence sources and to the rise of conflicting numerics and grid requirements between the Lagrangian and Eulerian parts of the simulated flow.
Journal Article

Effects of Turbulence Modeling and Grid Quality on the Zonal URANS/LES Simulation of Static and Reciprocating Engine-Like Geometries

2018-04-03
2018-01-0173
The interest in Unsteady Reynolds-Averaged Navier-Stokes (URANS)/Large Eddy Simulation (LES) hybrids, for the simulation of turbulent flows in Internal Combustion Engines (ICE), is consistently growing. An increasing number of applications can be found in the specialized literature for the past few years, including both seamless and zonal hybrid formulations. Following this trend, we have already developed a Detached Eddy Simulation (DES)-based zonal modeling technique, which was found to have adequate scale-resolving capabilities in several engine-like reference tests. In the present article we further extend our study by evaluating the effects of the underlying turbulence model and of the grid quality/morphology on the scale-resolved part of the flow. For that purpose, we consider DES formulations based on an enhanced version of the k-g URANS model and on the URANS form of the popular RNG k-ε model.
Technical Paper

A Zonal-LES Study of Steady and Reciprocating Engine-Like Flows Using a Modified Two-Equation DES Turbulence Model

2017-09-04
2017-24-0030
A two-equation Zonal-DES (ZDES) approach has been recently proposed by the authors as a suitable hybrid URANS/LES turbulence modeling alternative for Internal Combustion Engine flows. This approach is conceptually simple, as it is all based on a single URANS-like framework and the user is only required to explicitly mark which parts of the domain will be simulated in URANS, DES or LES mode. The ZDES rationale was initially developed for external aerodynamics applications, where the flow is statistically steady and the transition between zones of different types usually happens in the URANS-to-DES or URANS-to-LES direction. The same “one-way” transition process has been found to be fairly efficient also in steady-state internal flows with engine-like characteristics, such as abrupt expansions or intake ports with fixed valve position.
Journal Article

A Zonal Turbulence Modeling Approach for ICE Flow Simulation

2016-04-05
2016-01-0584
Turbulence modeling is a key aspect for the accurate simulation of ICE related fluid flow phenomena. RANS-based turbulence closures are still the preferred modeling framework among industrial users, mainly because they are robust, not much demanding in terms of computational resources and capable to extract ensemble-averaged information on a complete engine cycle without the need for multiple cycles simulation. On the other hand, LES-like approaches are gaining popularity in recent years due to their inherent scale-resolving nature, which allows the detailed modeling of unsteady flow features such as cycle-to-cycle variations in a DI engine. An LES requires however a large number of simulated engine cycles to extract reliable flow statistics, which coupled to the higher spatial and temporal resolution compared to RANS still poses some limits to a wider application of such methodology on realistic engine geometries.
Journal Article

Direct Numerical Simulation of Flow Induced Cavitation in Orifices

2013-09-08
2013-24-0005
In this paper, a multiphase Lattice Boltzmann approach is adopted to directly simulate flow conditions that lead to the inception of cavitation in an orifice. Different values of fluid surface tension are considered, which play a dramatic role in the evolution of vapour cavity, as well as different inlet velocities at the computational domain boundary. The results of the flow simulations in terms of density and velocity magnitude fields are examined, with special focus on the components of the stress tensor inside the cavitating region: a comparison with cavitation inception criteria known form literature is proposed, highlighting the good agreement between our direct numerical simulations and theoretical predictions.
Technical Paper

Application of an Integrated CFD Methodology for the Aerodynamic and Thermal Management Design of a Hi-Performance Motorcycle

2013-09-08
2013-24-0143
Though CFD methods have become very popular and widespread tools in the early as well as more advanced automotive design stages, they are still not so common in the motorcycle industry branch. The present work aims at the development of a comprehensive simulation environment, based on the open-source finite volume toolbox OpenFOAM®, for the aerodynamic and thermal fluxes optimization of a full motorcycle-and-rider geometry. The paper is divided in two parts: in the first one, the OpenFOAM® code is evaluated for a cold flow aerodynamic analysis, using a slightly simplified version of the Aprilia RSV4 motorbike geometry; in the second one, a mixed reduced scale-full scale methodology is proposed for the simultaneous assessment of aerodynamic forces and heat transfer performances of the engine cooling system. Results have been compared against other well established commercial CFD packages and, where available, with experimental measurements.
Technical Paper

CFD and FEM Analysis of a New Engine for Light Transportation Vehicles

2013-09-08
2013-24-0140
An engine head of a common rail direct injection engine with three in line cylinders for Light Transportation Vehicle (LTV) applications has been analyzed and optimized by means of uncoupled CFD and FEM simulations in order to assess the strength of the components. This paper deals with a structural stress analysis of the cylinder head considering the thermal loads computed through an CFD simulation and a detailed FV heat-transfer analysis. The FE model of the cylinder head includes the contact interaction between the main parts of the cylinder head assembly and it is subjected to the gas pressure, thermal loads and the effects of bolts tightening and valve springs. The results, in term of temperature field, are validated by comparing with those obtained by means of experimental analyses. Then a fatigue assessment of the cylinder head has been performed using a multi-axial fatigue criterion.
Technical Paper

On the Steady and Unsteady Turbulence Modeling in Ground Vehicle Aerodynamic Design and Optimization

2011-09-11
2011-24-0163
Computational Fluid Dynamics is nowadays largely employed as an effective optimization tool in the automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed reference model is a generic car-type bluff body with a slant back, which is frequently used as a benchmark test case by industrial as well as academic researchers, in order to investigate the performances of different turbulence modeling approaches. In spite of its relatively simple geometry, the Ahmed model possesses many of the typical aerodynamic features of a modern passenger car - a bluff body with separated boundary layers, recirculating flows and complex three-dimensional wake structures.
Technical Paper

Thermo-Structural Analysis of a New Engine Cylinder Head

2011-09-11
2011-24-0165
An engine head for microcar applications has been analysed and optimized by means of uncoupled CFD and FEM simulations in order to assess the strength of the component. This paper deals with a structural stress analysis of the cylinder head considering the thermal loads computed through an uncoupled CFD simulations of cylinder combustion and in cooling flow passages. The FE model includes the contact interaction between the main parts of the cylinder head assembly and it also considers the effects of bolts tightening and valve springs. Temperature dependent non-linear material properties are considered. The results, in term of temperature field, are validated by comparing with those obtained by means of experimental analyses; the engine has been instrumented with thermocouples on crank case and on cylinder head.
Technical Paper

Lattice Boltzmann Simulation of a Cavitating Diesel Injector Nozzle

2011-09-11
2011-24-0008
The onset of cavitating conditions inside the nozzle of diesel injectors is known to play a major role on spray characteristics, especially on jet penetration and break-up. In this work, for the first time a Direct Numerical Simulation (DNS) based on the Lattice Boltzmann Method (LBM) is applied to study the fluid dynamic field inside the nozzle of a cavitating diesel injector. The formation of the cavitating region is determined via a multi-phase approach based on the Shan-Chen Equation of State and its most recent enhancements. The evolution of cavitation bubbles is followed and the characteristic numbers, i.e., Cavitation Number (CN) and discharge coefficient (Cd) are evaluated. The results obtained by the LBM simulation are compared to both numerical and experimental data present in literature.
Journal Article

Lattice Boltzmann Modeling of Diesel Spray Formation and Break-Up

2010-04-12
2010-01-1130
Spray formation and break-up are crucial phenomena for mixture formation inside diesel engines, both for combustion control and pollutant formation. Since the emission restrictions have become more and more severe in the last years, many studies have been conducted in order to improve diesel injection. Numerical simulations have proven to be reliable in producing results in a faster and cheaper way than experimental measures. The recent great progresses in computer science, then, have allowed to reach great accuracy in the simulations. In this work, a novel methodology based on Boltzmanns Kinetic Theory is applied to diesel injection. Lattice Boltzmann BGK (LBGK) provides and alternative method for solving fluid-dynamic problems and allows even superior accuracy as compared to conventional CFD. The multiphase approach used in this paper to study spray formation and primary is based on the works by Shan and Chen and their successive modifications.
Journal Article

Modeling liquid break-up through a kinetic approach

2009-09-13
2009-24-0023
Liquid atomisation is an important technical field for a wide range of engineering and industrial applications, particularly in the field of internal combustion engines. In these engines, in fact, the amount of pollutants at the engine-out interface is directly related to the quality of the combustion process, which is in turn determined by the quality of the air-fuel mixture preparation in Direct Injection (DI) engines. As a consequence numerical-experimental research is crucial to their development. Despite the significant amount of research that has been carried out on DI engines simulation, breakup modelling is still a challenge. In this paper we present a new numerical model for multiphase flows that could be particularly suited for liquid jet and droplet breakup simulation. The model is based on a Lattice Boltzmann (LB) solver coupled to a higher order finite difference treatment of the kinetic forces arising from non-ideal interactions (potential energy).
Technical Paper

Parametric Study of Physical Requirements for Optimization of the EGR-rate and the Spray Formation for Minimum Emissions Production Over a Broad Range of Load/Speed Conditions

2006-04-03
2006-01-1120
The present paper describes a study, which can enable a small displacement (1.3 liter) turbocharged European CR-diesel engine to tolerate an important increase in EGR-level. The analysis is performed by use of a 3D virtual numerical engine model, which isolates the main parameters that must be optimized within the perimeter of the combustion chamber. The paper gives a short introduction to the physical background for NOx and soot-formation as well as a recall of the main issues related to the simulation models used in the virtual engine simulation. The analysis is performed in a 9 points load/speed test matrix. Several EGR-rates are studied as well as the impact of a precise temperature control of the exhaust gas re-introduced in the intake manifold. The paper concludes by an analysis of the cumulated impact on the EGR-level tolerated by the engine after the introduction of the suggested optimization measures.
X