Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Comparison of Lab Versus Engine Tests In the Development of a Highly Efficient Ammonia Formation Catalyst for a Passive SCR System

2015-09-06
2015-24-2504
Commercial three way catalysts have limited capacity towards reducing NOx in the presence of excessive oxygen. This prevents lean-burn combustion concepts from meeting legislative emission standards. A solution towards decreasing NOx emissions in the presence of excess air is the use of a passive-SCR system. Under rich conditions ammonia is formed over an ammonia formation catalyst, the ammonia is stored in the SCR and in its turn reacts with the NOx under lean engine conditions. Here up-scaled Pt/Al2O3 and Pd/Al2O3 catalysts as well as a commercially Pd-Rh based three-way catalyst (TWC) are evaluated using both engine and further lab-scale tests. The purpose of these tests is to compare the ammonia production for the various catalysts under various lambda values and temperatures by means of engine and lab scale tests. The Pd/Al2O3 showed little sensitivity to temperature both under engine and lab scale experiments.
Technical Paper

Ultra-Clean Transient Operation of a Compression Ignition Engine Fuelled with Upgraded Hydrous Bioethanol

2012-04-16
2012-01-0859
Bioethanol is an established biofuel used today in sparked-ignited (SI) engines, however with limited fuel efficiency and stringent requirements on the ethanol purity (water content). In this paper, we will present the operation of a compression-ignition (CI) engine fuelled with upgraded hydrous ethanol. A specific fuel upgrade operation (excluding additives) converts a fraction of the hydrous ethanol to diethyl-ether, hence increases the cetane number up to adequate levels. The resulting upgraded fuel is tested in a commercial diesel engine (light-duty common-rail EURO IV model). In particular, the compression ratio is kept unchanged and only the injection timing is modified to ensure compression-ignition operation, securing the peak pressure at 8-12 degrees after top dead center.
Technical Paper

Meeting the EURO VI NOx Emission Legislation using a EURO IV Base Engine and a SCR/ASC/DOC/DPF Configuration in the World Harmonized Transient Cycle

2010-04-12
2010-01-1216
To reach the very strict Euro VI regulations of PM and NOx for heavy-duty trucks, it will be necessary to apply integrated catalytic solutions for removal of both PM and NOx. The most cost-effective solution would be to base the Euro VI system on Euro IV/V base engines, without EGR, and apply a high efficiency aftertreatment system, able to reduce the NOx from the common 7-8 g/kWh down to the Euro VI level at 0.4 g/kWh. The described system consists of a catalytic configuration, where the SCR catalyst is placed directly downstream of the diesel engine followed by an ammonia slip catalyst (ASC) and diesel injection over an oxidation catalyst (DOC) and a catalyzed diesel particulate filter (cDPF).
Technical Paper

Performance of a Urea SCR System Combined with a PM and Fuel Optimized Heavy-Duty Diesel Engine Able to Achieve the Euro V Emission Limits

2002-10-21
2002-01-2885
In order to meet the Euro V heavy-duty diesel emission standard legislation limits, a diesel engine can be optimized by internal means to give low particulate emissions and lower fuel consumption. These modifications of the engine lead inevitably to higher NOx emissions due to the NOx/PM trade off. An efficient Urea SCR after-treatment system is then able to reduce the higher NOx emission to below the Euro V 2.0g/kWh legislation limit. This paper presents tests made on a PM optimized 12 liter heavy-duty diesel engine together with a urea SCR after-treatment system. The optimized engine had engine out particulate emissions of about 0.04 g/kWh and NOx emissions of 9 g/kWh for the ESC and 8,5 g/kWh for the ETC. The fuel consumption of the optimized engine was 194 g/kWh for the ESC and 198 g/kWh for the ETC as compared to state of the art Euro III engines of typically 210 g/kWh for the ESC, giving significant fuel savings of 7.5 %.
Technical Paper

Urea-SCR Catalyst System Selection for Fuel and PM Optimized Engines and a Demonstration of a Novel Urea Injection System

2002-03-04
2002-01-0289
This paper discusses the choice of catalyst types to reduce the NOx emissions down to the Euro V level. A novel Urea injection system is also presented, which is based on a mass produced digital dosing pump that is combined with an electronic control unit specially developed for controlling the Urea-SCR process onboard vehicles. It is shown that it is possible to have a NOx conversion above 80% with ammonia slip below 10 ppm using 30 liters of 130 cpsi catalysts for a 12 diesel engine. By increasing the cell density to 300 cpsi it is possible to reduce the catalyst volume by 2/3 down to 20 liters for the same engine.
Technical Paper

Combined Silencers and Urea-SCR Systems for Heavy-Duty Diesel Vehicles for OEM and Retrofit Markets

2001-03-05
2001-01-0517
Selective Catalytic Reduction (SCR) with NH3 or urea is one of the most effective methods for removal of NOx in exhaust from HD diesel engines with potential for achieving more than 90% NOx-reduction measured in the European transient or a US HD FTP test cycle. The present paper describes the following two systems; One OEM UREA-SCR SILENCER, comprising a silencer with built-in catalyst. The system was tested on a Scania DC1205 320 kW diesel engine, which was calibrated for the Euro II emission standard. The test results showed that it is possible to reduce more than 85% of the NOx emission with an insignificant NH3 slip in the ETC transient test cycle. The pressure-drop of the system was measured at 80% of that of the engine's original silencer and the silencing performance was improved for low frequencies below 125 Hz. One RETROFIT UREA-SCR SYSTEM for HD engines, comprising a silencer with built-in catalyst, an electronic urea injection control system, urea injection and a urea tank.
X