Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Effect of Valvetrain Components Misalignment on Valve and Guide Interactions in Automotive Engines

2017-03-28
2017-01-1082
Strict requirements for fuel economy and emissions are the main drivers for recent automotive engine downsizing and an increase of boosting technologies. For high power density engines, among other design challenges, valve and guide interactions are very important. Undesirable contact interactions may lead to poor fuel economy, engine noise, valve stem to valve guide seizure, and in a severe case, engine failure. In this paper, the valve stem and valve guide contact behavior is investigated using computational models for the camshaft drive in push and pull directions under several misalignment conditions for an engine with roller finger follower (RFF) valvetrain and overhead cam configuration. An engine assembly analysis with the appropriate assembly and thermal boundary conditions are first carried out using the finite element solver ABAQUS.
Journal Article

An Advanced and Comprehensive CAE Approach of Piston Dynamics Studies for Piston Optimal and Robust Design

2011-04-12
2011-01-1404
A successful piston design requires eliminate the following failure modes: structure failure, skirt scuffing and piston unusual noise. It also needs to deliver least friction to improve engine fuel economy and performance. Traditional approach of using hardware tests to validate piston design is technically difficult, costly and time consuming. This paper presents an up-front CAE tool and an analytical process that can systematically address these issues in a timely and cost-effectively way. This paper first describes this newly developed CAE process, the 3D virtual modeling and simulation tools used in Ford Motor Company, as well as the piston design factors and boundary conditions. Furthermore, following the definition of the piston design assessment criteria, several piston design studies and applications are discussed, which were used to eliminate skirt scuffing, reduce piston structure dynamic stresses, minimize skirt friction and piston slapping noise.
Technical Paper

Parameterization and FEA Approach for the Assessment of Piston Characteristics

2006-04-03
2006-01-0429
Elastohydrodynamic lubrication, piston dynamics and friction are important characteristics determining the performance and efficiency of an internal combustion engine. This paper presents a finite element analysis on a production piston of a gasoline engine performed using commercial software, the COSMOSDesignStar, and a comprehensive cylinder-kit simulation software, the CASE, to demonstrate the advantages of using a reduced, parameterized model analysis in the assessment of piston design characteristics. The full piston model is parameterized according to the CASE specifications. The two are analyzed and compared in the COSMOSDesignStar, considering thermal and mechanical loads. The region of interest is the skirt area on the thrust and anti-thrust sides of the piston.
Technical Paper

Reliability and Robustness Analysis of Engine Ring-Pack Performance

2003-03-03
2003-01-1221
Reduction of development time and improvement in product quality and reliability have been a driving force in the extremely competitive automotive industry. These trends require extensive use of Computer Aided Engineering (CAE) tools coupled with design optimization and analytical robustness and reliability tools. In this paper the Cylinder kit Analysis System for Engines (CASE), a CAE tool for predicting ring-pack performance in an automotive engine, has been integrated with the design optimization and analytical robustness and reliability tool (iSIGHT) for improving ring-pack performance, reliability, and robustness. A prototype engine has been analyzed and design recommendation tested with available manufacturing.
Technical Paper

Numerical Optimization of Ring-Pack Behavior

1999-05-03
1999-01-1521
The ring-pack behavior in a modern gasoline engine represent complicated phenomena. The process of ring pack design consists of two stages: understanding the physical behavior and design synthesis on the systematic manner. Computer models give an inside on the physical processes associated with the ring-pack behavior. Mathematical optimization techniques provide the tools for design synthesis on the systematic way based on an optimal criteria. The mathematical optimization technique was developed and applied to ring pack design synthesis. When applied to the existing engine ring-pack designs, the optimized results indicated the potential for significant reduction in blow-by through the ring-pack by optimizing ring pack geometry. The optimization results were compared with the original ring pack designs for two gasoline engines for a wide range of operating conditions.
X