Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Development of a 1kW Exhaust Waste Heat Thermoelectric Generator

2016-04-05
2016-01-1273
Although the technology of combustion engines is reasonably well developed, the degree of efficiency is considerably low. Considerable amount of the energy of around 35 % is lost as exhaust waste heat, and up to 30 % is dissipated in the cooling circuits. Due to this, thermal recuperation has a great potential for raising the efficiency of combustion engines. In order to meet the ever-increasing consumer demand for higher fuel economy, and to conform to more stringent governmental regulations, auto manufacturers have increasingly looked at thermoelectric materials as a potential method to recover some of that waste heat and improve the overall efficiency of their vehicle fleets. Seeking new possibilities to make vehicles greener and more efficient, the industry wants to use the waste heat which passes through the exhaust system almost completely unused in the past.
Technical Paper

Structural Durability Evaluation of Exhaust System Components

2007-04-16
2007-01-0467
In this paper, a combined analytical CAE procedure and durability experiments are used to calculate the durability of complete exhaust system. Detailed analytical calculations are carried out and the results are explained for the typical exhaust system components considering the durability loads such as engine vibration loading, proving ground road loads, thermal loads, loads created due to geometric dimensioning and tolerances (GD & T), and bolt loads. The durability issues associated with the exhaust system components such as hot-end brackets, converter cone-pipe region, exhaust pipe system, muffler-pipe system, muffler hanger designs, and residual stresses in an exhaust system assembly such as ball joint flange-flange interface, and hot-end converters are explained in detail. Both experimental results and analytical calculations are carried out.
Technical Paper

Heavy Duty Diesel After-Treatment System Analysis Based Design: Fluid, Thermal and Structural Considerations

2009-04-20
2009-01-0624
This paper gives an overview of the development work for a diesel after-treatment system, used in heavy duty trucks to fulfill the new US emissions limits. The paper starts with the description of design evaluation and optimization studies on heavy duty diesel exhaust after-treatment system using numerical simulation. The studies involve initial conceptual design evaluation of the entire after-treatment system for fluid flow, temperature distribution, and subsequent structural loads. Computer modeling, as complementary approach to prototyping and experimental investigations, helps to make basic design decisions and therefore to shorten the overall development process. The numerical simulation involves computational fluid dynamics (CFD) analysis for fluid flow and temperature distribution and finite element analysis (FEA) for subsequent structural analysis. The first part of the paper involves computational fluid dynamic optimization study related to diesel exhaust system.
Technical Paper

Optimization of Exhaust Systems

2002-03-04
2002-01-0059
Some design optimization studies of automotive exhaust systems are carried out using numerical simulation. The numerical simulation involves computational fluid dynamics (CFD) for fluid flow and temperature distribution and finite element analysis (FEA) for subsequent structural analysis. The emphasis is given to optimization related to exhaust system design parameters such as shape and profile of manifold, catalyst inlet tube, inlet cone, exit cone, and exit tube under a given exhaust gas conditions. Several examples of optimization involving study of design parameters on the index of flow uniformity and backpressure are illustrated. Some studies in the past have shown that angular inflow in to catalyst substrate would give high flow uniformity index and flow out let profiles may not significantly affect the uniformity flow index near the inlet of catalyst. The present study shows that this is not always the case and some examples are illustrated to highlight these aspects.
Technical Paper

Exhaust System Manifold Development

2012-04-16
2012-01-0643
This paper describes the simulation and experimental work recently carried out during a typical exhaust manifold system development utilizing fabricated stainless steel manifolds. The exhaust manifold bridges the gap between the engine block and the catalytic converter. Bolted tightly to the engine with a gasket in between the manifold and the engine block, the engine's exhaust dispenses spent fuel and air into the manifold at an extremely high temperature. The automotive exhaust manifolds are designed and developed for providing a smooth flow with low/least back pressure and must be able to withstand extreme heating under very high temperatures and cooling under low temperatures. This paper describes all the analytical steps, procedure and tools such as CFD and FEA used in the development of a manifold system. The CFD tool utilizing conjugate heat transfer is used to calculate temperature distribution on the manifold. The manifold system durability is calculated using FEA.
Technical Paper

Numerical Study on Skin Temperature and Heat Loss of Vehicle Exhaust System

2005-04-11
2005-01-1622
The ability to accurately predict skin temperatures of catalytic converter and manifold is very important for a robust/durable design of the vehicle exhaust system, especially in the development of close coupled converter system. In this paper, Computational Fluid Dynamics (CFD) is used to calculate the skin temperature of complicated components in vehicle exhaust system such as catalytic converter. Generally, a catalytic converter consists of substrate, mat, outer shell, inner cone, cone insulation, and outer cone. 3-D compressible turbulent fluid flow with heat transfer involved in force and natural convections, heat conduction and radiation is numerically simulated. First, both numerical calculation and experimental tests are conducted for a catalytic converter under the same operation conditions to evaluate the accuracy of current numerical method. Good agreement is found between CFD prediction and experimental tests.
Technical Paper

Thermomechanical Evaluation of Close Coupled Converter System

2005-04-11
2005-01-1623
Stricter emission standards are forcing automakers to attach catalytic converters directly to the exhaust manifold. Mounting catalytic converter at or near the exhaust manifold helps to reduce the increase in emissions that occurs during the first few minutes after a cold engine is started. The spike occurs because cold engines require a richer air-fuel mixture to run smoothly. The emission standards can be met only by new designs of exhaust system with the catalyst being as close as possible to the engine, and with the thin walled exhaust manifolds. With concept-to-customer timing continuously shrinking in the automotive industry, the need to quickly validate the engineering designs is becoming ever more critical. It is no longer acceptable to design a component, produce soft tooling, build and test a prototype, analyze what failed, and then redesign.
Technical Paper

Thermal Analysis of Diesel After-Treatment System

2010-04-12
2010-01-1215
In order to meet the mandated EPA2010 emissions for heavy duty commercial vehicle regulations, most applications require very large, complex, yet compact exhaust after-treatment systems. These systems not only contain the necessary substrates and filters to perform the proper emissions conversion, they also typically will consist of mixing pipes and internal reversing chambers all within very tight space proximity. Some of these systems are able to accomplish the complete emissions reduction and conversion within a single, large packaging unit. While there are advantages in fuel efficiency and perhaps overall packaging with these “single box” units, the disadvantage of these types of designs is that it prohibits many internal components from cooling down by the outside environment, which can pose thermal mechanical durability challenges.
X