Refine Your Search

Search Results

Author:
Viewing 1 to 10 of 10
Technical Paper

Transmission Virtual Torque Sensor - Absolute Torque Estimation

2012-04-16
2012-01-0111
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by the transmission. Clearly, torque regulation is important for transmission control. Unfortunately, a physical torque sensor has been too costly for production applications. With no torque measurement for feedback, controls in AT is mainly implemented in an open-loop fashion. Therefore, complicated adaptation algorithms are necessary while undesired shifts may still occur. To further simplify the controls and enhance its consistency and robustness, a direct torque feedback has long been desired in transmission control synthesis and development. A “virtual” torque sensor (VTS) algorithm has recently been developed to show a good potential in estimating relative torque along transmission output shaft using transmission output speed sensor and wheel speed sensors.
Technical Paper

Model Based Torque Converter Clutch Slip Control

2011-04-12
2011-01-0396
To realize better fuel economy benefits from transmissions, car makers have started the application of torque converter clutch control in second gear and beyond, resulting in greater demand on the torque converter clutch (TCC) and its control system. This paper focuses on one aspect of the control of the torque converter clutch to improve fuel economy and faster response of the transmission. A TCC is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. However, due to the non-linear nature of the torque converter fluid coupling, the slip feedback control has to be very active to handle different driver inputs and road-load conditions, such as different desired slip levels, changes in engine input torques, etc. This non-linearity requires intense calibration efforts to precisely control the clutch slip in all the scenarios.
Technical Paper

Relative Torque Estimation on Transmission Output Shaft with Speed Sensors

2011-04-12
2011-01-0392
Automobile drivers/passengers perceive automatic transmission (AT) shift quality through the torque transferred by transmission output shaft, so that torque regulation is critical in transmission shift control and etc. However, since a physical torque sensor is expensive, current shift control in AT is usually achieved by tracking a turbine speed profile due to the lack of the transmission output torque information. A direct torque feedback has long been desired for transmission shift control enhancement. This paper addresses a “virtual” torque sensor (VTS) algorithm that can provide an accurate estimate on the torque variation in the vehicle transmission output shaft using (existing) speed sensors. We have developed the algorithm using both the transmission output speed sensor and anti-lock braking system speed sensors. Practical solutions are provided to enhance the accuracy of the algorithm. The algorithm has been successfully implemented on both FWD and RWD vehicles.
Technical Paper

Modeling of a Wedge Clutch in an Automatic Transmission

2010-04-12
2010-01-0186
A wedge clutch with a wedge ramp transfers the tangential force to an axial force. It has unique features of self-reinforcement and small actuation force, and can be packaged into tight spaces. This wedge clutch can be developed to apply to an automatic transmission (AT) or a hybrid transmission. This paper focuses on the simulation of one wedge clutch in AT during shifting. A mathematical formula is given to describe the self-reinforcement principle of the wedge. The dynamic model of a motor actuated wedge clutch during shifting is built to simulate and develop the control algorithm. The model is implemented in Matlab/Simulink, which includes a DC motor model, a dynamic model of the wedge mechanism and clutch pack, and a driveline model of AT which can simulate a gear shift process. The key characteristics such as variation of normal pressure, response time and energy consumption are evaluated, and the results show a favorable comparison with the traditional hydraulic clutch.
Technical Paper

Shudder Durability of a Wet Launch Clutch Part I – Thermal Study and Development of Durability Test Profile

2009-04-20
2009-01-0329
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. A test bench was designed. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle–parallel) and two separator plate conditions (nitrided and non–nitrided) were considered. Considerable improvement in performance was seen by changing from CVT fluid* to DCT fluid*. A thermal analysis based on thermal model predictions and measurement correlations was conducted. Comparisons of clutch configurations with four and five friction plates were done. The waffle and radial groove pattern showed better heat transfer than the waffle–parallel groove pattern.
Journal Article

Shudder Durability of a Wet Launch Clutch Part II - Durability Study

2009-04-20
2009-01-0330
Under the initiative of the United States Council for Automotive Research LLC (USCAR§) Transmission Working Group, a collaborative effort was made with LuK USA LLC to study the influence of the friction interface parameters on the shudder durability of a wet launch clutch. Clutch configurations with different combinations of four friction materials (A, B, C and D), three groove patterns (waffle, radial and waffle-parallel) and two separator plate conditions (nitrided and non-nitrided) were considered. Durability testing consisted of a test profile, with 110 kJ energy per test cycle, developed earlier in this project. Materials A, B and C with nitrided separator plates reached the end of test criteria for the torque gradient and showed shudder. Materials B and C were more wear resistant as compared to materials A and D. The loss of friction coefficient (μ) was lower for materials B, C and D as compared to material A.
Journal Article

Aggressive Torque Converter Clutch Slip Control and Driveline Torsional Velocity Measurements

2008-06-23
2008-01-1584
In automatic transmissions, an open torque converter transmits torque from the engine to the transmission using fluid coupling. Although torque converters are ideal launch devices for automatic transmissions, they are inefficient in steady-state operations. An electronically controlled capacity clutch (ECCC) is implemented to control the slip between the pump and turbine of the torque converter, thereby increasing its energy transfer efficiency and increasing vehicle fuel economy. Even though reducing torque converter slip minimizes losses due to fluid coupling, it also decreases the damping provided by a slipping torque converter and as a result increases the sensitivity of the driveline to engine excitations. This investigation uses driveline torsional velocity response measurements to evaluate the effects of using slip feedback closed-loop control with a very aggressive torque converter ECCC slip schedule in automatic transmissions.
Technical Paper

Vehicle Implementation of a GM RWD Six-Speed Integrated-Friction-Launch Automatic Transmission

2007-08-05
2007-01-3747
Friction Launch transmissions use a wet multi-plate clutch to replace the torque converter in an automatic transmission. By using one of the range clutches inside the transmission, the benefits of this integrated friction launch technology (IFL), such as reduction in mass, packaging, and cost, can be enhanced. The availability of new automatic transmissions with higher number of speeds and wider ratio spreads makes IFL technology more viable than ever before. The new GM Rear-Wheel-Drive (RWD) six-speed transmission has paved the way for a full implementation of integrated friction launch technology in a GM full size Sport-Utility Vehicle (SUV). This project focuses on both hardware and control issues with the friction launch clutch. The hardware issues include designing the clutch for launch energy, cooling, and durability.
Technical Paper

Fuel Economy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0246
A wet multi-plate clutch, designated as the “starting clutch”, and a two-speed simple planetary gearset are used to replace the torque converter in the 4T60-E automatic transmission in order to study the potential improvement of vehicle fuel economy without sacrificing 0 - 60 mph acceleration performance. The starting clutch and the two-speed simple planetary gearset are designed to fit in the torque converter compartment. This paper describes the modified five-speed 4T60-E starting clutch automatic transmission system and provides vehicle test results to demonstrate its fuel economy and 0-60 mph performance potential.
Technical Paper

A Five-Speed Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0248
A wet multi-plate clutch, designated as the “starting clutch”, is used to replace the torque converter in the automatic transmission in order to improve vehicle fuel economy. The transmission ratio spread must be increased to compensate for the torque multiplication of the torque converter and avoid penalizing the 0-60 mph acceleration performance. The main challenge of this concept is the control of the starting clutch to ensure acceptable vehicle drivability. This paper describes the system of a five-speed starting clutch automatic transmission vehicle and shows vehicle test results. Vehicle test data show that (i) the fuel economy benefit of the starting clutch is significant, and (ii) a starting clutch transmission can be designed to equal or better the 0-60 mph acceleration performance of a torque converter transmission by proper selection of the gear ratios.
X