Refine Your Search

Topic

Search Results

Author:
Technical Paper

Real World Emissions from Tier 4F Off-Road Construction Equipment

2022-03-29
2022-01-0577
The primary purpose of this study was to obtain gas-phase and particular matter (PM) emissions from newer Tier 4 final off-road construction equipment using a Portable Emissions Measurement System (PEMS). This information can be used to provide accurate estimates of emissions from off-road construction equipment under real-world scenarios. Emission measurements were made for 10 pieces of Tier 4 final construction equipment including 3 excavators, 3 wheel loaders, 2 crawler tractors and 2 backhoe/loaders. The duty cycles included a pre-defined combined sequence of a cold-start phase, trenching, backfilling, travelling, and idling. For all types of equipment, the highest emissions were seen for the cold start phase, which showed NOx emissions levels ranging from 3.4 to 6.3 g/bhp-hr, from 15.8 to 26.1 g/kg-fuel and from 107 to 249 g/hour, with an average exhaust temperature around 100°C.The next highest emissions were found for the travel mode.
Journal Article

Performance and Activity Characteristics of Zero Emission Battery-Electric Cargo Handling Equipment at a Port Terminal

2022-03-29
2022-01-0576
Goods movement and port related activities are a significant source of emissions in many large urban areas. Electrification of diesel cargo handling equipment is one method of reducing community exposure to these emissions, that also provides the potential for reducing greenhouse gas emissions. This study evaluated the performance of several pieces of zero emission cargo transfer equipment for a demonstration conducted at two terminal locations at the Port of Long Beach (POLB). This included the data logging of three battery-electric top handlers and one battery-electric yard tractor, as well as two baseline diesel top handlers and one diesel yard tractor. The battery-electric equipment typically operated about 5 hours per day, while using between 34 to 50% of the battery pack state of charge (SOC). In general, the battery-electric equipment was able to provide comparable hours of operation to the diesel equipment over a typical 8-hour shift.
Technical Paper

Engine-Out Emissions Characteristics of a Light Duty Vehicle Operating on a Hydrogenated Vegetable Oil Renewable Diesel

2020-04-14
2020-01-0337
We assessed the engine-out emissions of an ultra-low sulfur diesel (ULSD) and a neat hydrogenated vegetable oil (HVO) from a light-duty diesel truck equipped with common rail direct injection. The vehicle was tested at least twice on each fuel using the LA-92 drive cycle and at steady-state conditions at 30 mph and 50 mph at different loads. Results showed reductions in the engine-out total hydrocarbon (THC), carbon monoxide (CO), nitrogen oxide (NOx), and particulate emissions with HVO. The reductions in soot mass, solid particle number, and particulate matter (PM) mass emissions with HVO were due to the absence of aromatic and polyaromatic hydrocarbon compounds, as well as sulfur species, which are known precursors of soot formation. Volumetric fuel economy, calculated based on the carbon balance method, did not show statistically significant differences between the fuels.
Technical Paper

Emissions from Advanced Ultra-Low-NOx Heavy-Duty Natural Gas Vehicles

2019-04-02
2019-01-0751
The emissions of two ultralow NOx heavy-duty (HD) vehicles equipped with 0.02 g/bhp-hr low NOx natural gas (NG) engines were evaluated on a chassis dynamometer. This included a waste hauler and a city transit bus, each with a 0.02 g/bhp-hr NOx L9N near zero (NZ) natural gas engine. The vehicles were tested over a variety of different cycles, including the Urban Dynamometer Driving Schedule (UDDS), port drayage cycles, transit bus cycles, and a refuse truck cycle. For both vehicles, the NOx emissions results were below the 0.02 g/bhp-hr level for most cycles, with the exception of some cold start tests. For the waste hauler, NOx emissions averaged between 0.014 and 0.002 g/bhp-hr for the hot start tests, and from 0.043 to 0.014 g/bhp-hr for the cold start tests. This represented NOx emissions reductions from 97%-100% of compared with previous ISL G 8.9 engines.
Technical Paper

Fuel Effects on PM Emissions from Different Vehicle/Engine Configurations: A Literature Review

2018-04-03
2018-01-0349
Particulate matter (PM) emitted from gasoline combustion continues to be a subject of research and regulatory interest. This is particularly true as new technology gasoline direct injection (GDI) engines can produce significantly higher levels of PM compared to older technology port fuel injection (PFI) engines. The goal of this study was to conduct a comprehensive literature search and subsequent statistical analysis related to the effects of gasoline properties, such as aromatics, octane indices, and fuel volatility, on PM (mass and number) emissions from PFI and GDI vehicles/engines. The statistical analyses showed a range of positive and negative correlations between different fuel properties and PM mass, total particle number (PN) and solid particle number (SPN) for different engine types (GDI, PFI, and for subdivisions of these engine types), numbers of engine cylinders and driving cycles.
Journal Article

Emissions and Fuel Economy Evaluation from Two Current Technology Heavy-Duty Trucks Operated on HVO and FAME Blends

2016-04-05
2016-01-0876
Gaseous and particulate matter (PM) emissions were assessed from two current technology heavy-duty vehicles operated on CARB ultra-low sulfur diesel (ULSD), hydrotreated vegetable oil (HVO) blends, and a biodiesel blend. Testing was performed on a 2014 model year Cummins ISX15 vehicle and on a 2010 model year Cummins ISB6.7 vehicle. Both vehicles were equipped with diesel oxidation catalysts (DOC), diesel particulate filter (DPF), and selective catalytic reduction (SCR) systems. Testing was conducted over the Heavy-Duty Urban Dynamometer Driving Schedule (UDDS) and Heavy Heavy-Duty Diesel Truck (HHDDT) Transient Cycle. The results showed lower total hydrocarbons (THC), non-methane hydrocarbons (NMHC), and methane (CH4) emissions for the HVO fuels and the biodiesel blend compared to CARB ULSD. Overall, nitrogen oxide (NOx) emissions showed discordant results, with both increases and decreases for the HVO fuels.
Technical Paper

Laboratory Testing of a Continuous Emissions Monitor for Trace Level Sulfur Dioxide

2016-04-05
2016-01-0986
The measurement of SO2 levels in vehicle exhaust can provide important information in understanding the relative contribution of sulfur and sulfate from fuel vs. oil source to PM. For this study, a differential optical absorption spectrometer (DOAS) that can measure SO2 down to 20 ppbV in real-time was built and evaluated. The DOAS consisted of an extractive sampling train, a cylindrical sampling cell with a single-path design to minimize cell volume, a spectrometer, and a deuterium lamp light source with a UVC range of ∼200-230 nanometer (nm). Laboratory tests showed detection limits were approximately in the range of 12 to 15 ppbV and showed good linearity over SO2 concentration ranges of 20 to 953 ppbV. Interference tests showed some interference by NO and by NH3, at levels of 300 ppmV and 16.6 ppmV, respectively.
Technical Paper

Gaseous and Particulate Emissions from a Waste Hauler Equipped with a Stoichiometric Natural Gas Engine on Different Fuel Compositions

2016-04-05
2016-01-0799
We assessed gaseous and particulate matter (PM) emissions from a current technology stoichiometric natural gas waste hauler equipped with a 2011 model year 8.9L Cummins Westport ISL-G engine with cooled exhaust gas recirculation (EGR) and three-way catalyst (TWC). Testing was performed on five fuels with varying Wobbe and methane numbers over the William H. Martin Refuse Truck Cycle. The results showed lower nitrogen oxide (NOx) emissions for the low methane fuels (i.e., natural gas fuels with a relatively low methane content) for the transport and curbside cycles. Total hydrocarbon (THC) and methane (CH4) emissions did not show any consistent fuel trends. Non-methane hydrocarbon (NMHC) emissions showed a trend of higher emissions for the fuels containing higher levels of NMHCs. Carbon monoxide (CO) emissions showed a trend of higher emissions for the low methane fuels.
Journal Article

Chassis Dynamometer Testing of a Class 5 Battery Electric Commercial Truck

2015-10-01
2015-01-9019
With funding from the California Energy Commission, the California Hybrid, Efficient and Advanced Truck Research Center, contracted with the University of California, Riverside's College of Engineering to evaluate the performance of a Class 5 battery electric urban delivery vehicle over two standardized driving cycles and a steady state range test on a chassis dynamometer. The test vehicle, a Smith Electric Newton Step Van, was equipped with a proprietary data acquisition system which was set to record a wide variety of vehicle parameters at a 1 Hz sampling period. In addition, the chassis dynamometer was set to measure and record additional parameters. Lastly, a portable J1772 EVSE recorded both grid energy and power at 15-minute intervals. This project provides a controlled test evaluation of the Smith Electric Newton Step Van. It recognizes the vehicle's potential for a successful delivery vehicle and identifies several important findings and areas that will need further research.
Journal Article

A Complete Assessment of the Emissions Performance of Ethanol Blends and Iso-Butanol Blends from a Fleet of Nine PFI and GDI Vehicles

2015-04-14
2015-01-0957
Biofuels, such as ethanol and butanol, have been the subject of significant political and scientific attention, owing to concerns about climate change, global energy security, and the decline of world oil resources that is aggravated by the continuous increase in the demand for fossil fuels. This study evaluated the potential emissions impacts of different alcohol blends on a fleet of modern gasoline vehicles. Testing was conducted on a fleet of nine vehicles with different combinations of ten fuel blends over the Federal Test Procedure and Unified Cycle. The vehicles ranged in model year from 2007-2014 and included four vehicles with port fuel injection (PFI) fueling and five vehicles with direct injection (DI) fueling. The ten fuel blends included ethanol blends at concentrations of 10%, 15%, 20%, 51%, and 83% by volume and iso-butanol blends at concentrations of 16%, 24%, 32%, and 55% by volume, and an alcohol mixture giving 10% ethanol and 8% iso-butanol in the final blend.
Technical Paper

Emissions, Fuel Economy, and Performance of a Class 8 Conventional and Hybrid Truck

2015-04-14
2015-01-1083
Emissions, fuel economy, and performance are determined over a light and a heavy driving cycle designed to represent the vehicles in-use driving patterns. The vehicles are 2010 class 8 Freightliner tractor trucks equipped with Cummins engines with Selective Catalytic Reduction and Diesel Particulate Filter emission control systems. The hybrid has lower carbon dioxide emissions, better fuel economy, and nitrogen oxide emissions statistically the same as the conventional. The CO emissions are well below the standards for both vehicles, but they are higher from the hybrid. The higher CO emissions for the hybrid are primarily related to the cooling of the Diesel Oxidation Catalyst (DOC) during the standard 20 minute key-off soak between repeats of the driving cycles. With a 1 minute key-off soak the CO emissions from the hybrid are negative.
Technical Paper

Evaluating Particulate Emissions from a Flexible Fuel Vehicle with Direct Injection when Operated on Ethanol and Iso-butanol Blends

2014-10-13
2014-01-2768
The relationship between ethanol and iso-butanol fuel concentrations and vehicle particulate matter emissions was investigated. This study utilized a gasoline direct injection (GDI) flexible fuel vehicle (FFV) with wall-guided fueling system tested with four fuels, including E10, E51, E83, and an iso-butanol blend at a proportion of 55% by volume. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer with an emphasis on the physical and chemical characterization of particulate matter (PM) emissions. The results indicated that the addition of higher ethanol blends and the iso-butanol blend resulted in large reductions in PM mass, soot, and total and solid particle number emissions. PM emissions for the baseline E10 fuel were characterized by a higher fraction of elemental carbon (EC), whereas the PM emissions for the higher ethanol blends were more organic carbon (OC) in nature.
Journal Article

Regulated Emissions, Air Toxics, and Particle Emissions from SI-DI Light-Duty Vehicles Operating on Different Iso-Butanol and Ethanol Blends

2014-04-01
2014-01-1451
Gasoline direct injection (GDI) engines have improved thermodynamic efficiency (and thus lower fuel consumption) and power output compared with port fuel injection (PFI) and their penetration is expected to rapidly grow in the near future in the U.S. market. In addition, the use of alternative fuels is expanding, with a potential increase in ethanol content beyond the current 10%. Increased emphasis has been placed on butanol due to its more favorable fuel properties, as well as new developments in production processes. This study explores the influence of mid-level ethanol and iso-butanol blends on criteria emissions, gaseous air toxics, and particulate emissions from two wall-guided gasoline direct injection passenger cars fitted with three-way catalysts. Emission measurements were conducted over the Federal Test Procedure (FTP) driving cycle on a chassis dynamometer.
Technical Paper

Regulated Emissions from Liquefied Petroleum Gas (LPG) Powered Vehicles

2014-04-01
2014-01-1455
Engine manufacturers have explored many routes to reducing the emissions of harmful pollutants and conserving energy resources, including development of after treatment systems to reduce the concentration of pollutants in the engine exhaust, using alternative fuels, and using alternative fuels with after treatment systems. Liquefied petroleum gas (LPG) is one alternative fuel in use and this paper will discuss emission measurements for several LPG vehicles. Regulated emissions were measured for five school buses, one box truck, and two small buses over a cold start Urban Dynamometer Driving Schedule (CS_UDDS), the Urban Dynamometer Driving Schedule (UDDS), and the Central Business District (CBD) cycle. In general, there were no significant differences in the gas phase emissions between the UDDS and the CBD test cycles. For the CS-UDDS cycle the total hydrocarbons and non-methane hydrocarbon emissions are higher than they are from the UDDS cycle.
Technical Paper

Emissions and Redox Activity of Biodiesel Blends Obtained from Different Feedstocks from a Heavy-Duty Vehicle Equipped with DPF/SCR Aftertreatment and a Heavy-Duty Vehicle without Control Aftertreatment

2014-04-01
2014-01-1400
The primary objective of this study was to evaluate the impact of three different biodiesel feedstocks on emissions compared to a baseline CARB ULSD with two heavy-duty trucks equipped with and without aftertreatment technologies. The biodiesels included a soybean oil methyl ester (SME), a waste cooking oil methyl ester (WCO), and a methyl ester obtained from animal fat (AFME), blended at a 50% level by volume with the CARB diesel. The vehicles were equipped with a 2010 Cummins ISX-15 engine with a selective catalytic reduction (SCR), diesel oxidation catalyst (DOC) and a diesel particulate filter (DPF) and with a 2002 Cummins ISX-450 engine. Both vehicles were tested over the Urban Dynamometer Driving Schedule (UDDS) on a heavy-duty chassis dynamometer. For this study, nitrogen oxides (NOx), carbon monoxide (CO), carbon dioxide (CO2), total hydrocarbons (THC), methane (CH4), non-methane hydrocarbons (NMHC), and particulate matter (PM) were measured.
Technical Paper

Determination of Suspended Exhaust PM Mass for Light-Duty Vehicles

2014-04-01
2014-01-1594
This study provides one of the first evaluations of the integrated particle size distribution (IPSD) method in comparison with the current gravimetric method for measuring particulate matter (PM) emissions from light-duty vehicles. The IPSD method combines particle size distributions with size dependent particle effective density to determine mass concentrations of suspended particles. The method allows for simultaneous determination of particle mass, particle surface area, and particle number concentrations. It will provide a greater understanding of PM mass emissions at low levels, and therefore has the potential to complement the current gravimetric method at low PM emission levels. Six vehicles, including three gasoline direct injected (GDI) vehicles, two port fuel injected (PFI) vehicles, and one diesel vehicle, were tested over the Federal Test Procedure (FTP) driving cycle on a light-duty chassis dynamometer.
Journal Article

Evaluation of the Impacts of Biofuels on Emissions for a California Certified Diesel Fuel from Heavy-Duty Engines

2013-04-08
2013-01-1138
The impact of biodiesel and new generation biofuels on emissions from heavy-duty diesel engines was investigated using a California Air Resources Board (CARB) certified diesel fuel as a base fuel. This study was performed on two heavy-duty diesel engines, a 2006 engine and a diesel particle filter (DPF) equipped 2007 engine, on an engine dynamometer over four different test cycles. Emissions from soy-based and animal-based biodiesel, renewable diesel fuel, and gas-to-liquid (GTL) diesel fuel were evaluated at blend levels ranging from 5 to 100%. Consistent with previous studies, particulate matter (PM), hydrocarbons (HC), and carbon monoxide (CO) emissions generally showed increasing reductions with increasing biodiesel and renewable/GTL diesel fuel blend levels for the non-DPF equipped engine. The levels of these reductions were generally comparable to those found in previous studies performed using more typical Federal diesel fuels.
Technical Paper

Criteria Emissions, Particle Number Emissions, Size Distributions, and Black Carbon Measurements from PFI Gasoline Vehicles Fuelled with Different Ethanol and Butanol Blends

2013-04-08
2013-01-1147
The introduction of biofuels is seen as a very important measure to reduce the emissions of greenhouse gases from the transport sector. Currently, ethanol is the most widely used renewable fuel for transportation in the US and with the push to use increasingly higher levels of renewable fuels, there has been an accompanying push to further increase the ethanol level in gasoline. In addition to ethanol, butanol, an alcohol which can be produced from biomass sources, has recently received more attention as an alternative to gasoline for use in spark ignition (SI) engines. For this study, two 2007 model year and one 2012 model year light-duty vehicles equipped with a three-way catalyst (TWC) were employed. For the 2007 model year vehicles, emissions and fuel economy measurements were made for E10 (reference fuel), E15, E20, and B16 fuels. The latter corresponds to a blend of gasoline and 16% of butanol, which is the equivalent of E10 in terms of oxygen content.
Technical Paper

Influence of Different Natural Gas Compositions on the Regulated Emissions, Aldehydes, and Particle Emissions from a Transit Bus

2013-04-08
2013-01-1137
Urban air quality in California can have a large impact on the state's economy, natural and managed ecosystems, and human health and mortality. The use of alternative, low-carbon fuels is considered to be an effective measure to meet strict emissions regulations of particulate matter (PM) and oxides of nitrogen (NOx). Natural gas may be a potential alternative to conventional liquid fuels for use in automotive internal combustion engines, and can be used in fulfilling these requirements. The primary objective of this study is to evaluate the impact of varying natural gas composition on the exhaust emissions from a transit bus equipped with a 2003 Cummins C Gas Plus, lean-burn, spark-ignited natural gas engine and an oxidation catalyst while operating on the Central Business District (CBD) cycle on a chassis dynamometer.
Journal Article

Influence of Different Natural Gas Blends on the Regulated Emissions, Particle Number and Size Distribution Emissions from a Refuse Hauler Truck

2012-09-10
2012-01-1583
Natural gas is a potential alternative to conventional liquid fuels for use in automotive internal combustion engines. The primary goal of this study is to understand how gas composition changes might impact the performance or emissions of a natural gas vehicle or engine. For this study, a waste hauler truck equipped with a 2001 Cummins 8.3L C Gas Plus lean burn spark-ignited engine and an oxidation catalyst was operated on the William H. Martin Refuse Truck Cycle (RTC). This cycle was developed to simulate waste hauler operation and consists of a transport segment, a curbside pickup segment, and a compaction segment.
X