Refine Your Search

Search Results

Author:
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2018-04-03
2018-01-0329
This review article summarizes major and representative developments in vehicle emissions regulations, engine efficiency, and emission control from 2017. The article starts with the key regulatory developments in the field, including newly proposed European light-duty (LD) CO2 regulations (15 and 30% cuts in 2025 and 2030, respectively, from 2020 levels) and technical improvements of the Euro 6 real driving emissions (RDE) regulations. China finalized their new energy vehicle (NEV) mandates for 2019 and 2020. LD and heavy-duty (HD) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas (GHG) regulations. Several LD gasoline concepts are achieving 10-15% and some up to 35% reductions relative to gasoline direct injection (GDI) engines of today.
Technical Paper

Review of Vehicle Engine Efficiency and Emissions

2017-03-28
2017-01-0907
This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
Journal Article

Vehicular Emissions in Review

2016-04-05
2016-01-0919
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
Journal Article

Review of Vehicular Emissions Trends

2015-04-14
2015-01-0993
This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
Journal Article

Vehicular Emissions in Review

2014-04-01
2014-01-1491
The review paper summarizes major developments in vehicular emissions regulations and technologies in 2013. First, the paper covers the key regulatory developments in the field, including proposed light-duty (LD) criteria pollutant tightening in the US; and in Europe, the continuing developments towards real-world driving emissions (RDE) standards. Significant shifts are occurring in China and India in addressing their severe air quality problems. The paper then gives a brief, high-level overview of key developments in fuels. Projections are that we are in the early stages of oil supply stability, which could stabilize fuel prices. LD and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are or will soon be demonstrating 50% brake thermal efficiency using common approaches.
Journal Article

Vehicular Emissions in Review

2013-04-08
2013-01-0538
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2012. First, the paper covers the key regulatory developments in the field, including finalized criteria pollutant tightening in California; and in Europe, the development of real-world driving emissions (RDE) standards. The US finalized LD (light-duty) greenhouse gas (GHG) regulation for 2017-25. The paper then gives a brief, high-level overview of key developments in LD and HD engine technology, covering both gasoline and diesel. Marked improvements in engine efficiency are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are just starting to demonstrate 50% brake thermal efficiency. NOx control technologies are then summarized, including SCR (selective catalytic reduction) with ammonia, and hydrocarbon-based approaches.
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Journal Article

Diesel Emissions in Review

2011-04-12
2011-01-0304
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for 70% tightening of fleet average light-duty (LD) criteria emissions likely to be proposed in California for ~2016-22. CO₂ regulations in both the heavy- and light-duty sectors will also tighten and impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Light-duty diesel engines are making incremental gains with combustion enhancements that allow downsizing for CO₂ savings. Heavy-duty (HD) engine show trade-offs between hardware recipes, exhaust deNOx control, and fuel consumption.
Journal Article

Review of Diesel Emissions and Control

2010-04-12
2010-01-0301
This review summarizes the latest developments in diesel emissions regarding regulations, engines, NOx (nitrogen oxides) control, particulate matter (PM) reductions, and hydrocarbon (HC) and CO oxidation. Regulations are advancing with proposals for PN (particle number) regulations that require diesel particulate filters (DPFs) for Euro VI in 2013-14, and SULEV (super ultra low emission vehicle) fleet average light-duty (LD) emissions likely to be proposed in California for ~2017. CO₂ regulations will also impact diesel engines and emissions, probably long into the future. Engine technology is addressing these needs. Heavy-duty (HD) research engines show 90% lower NOx at the same PM or fuel consumption levels as a reference 2007 production engine. Work is starting on HD gasoline engines with promising results. In light duty (LD), engine downsizing is progressing and deNOx is emerging as a fuel savings strategy.
Journal Article

Review of CO2 Emissions and Technologies in the Road Transportation Sector

2010-04-12
2010-01-1276
The topic of CO₂ and fuel consumption reductions from vehicles is a very broad and complex issue, encompassing vehicle regulations, biofuel mandates, and a vast assortment of engine and vehicle technologies. This paper attempts to provide a high-level review of all these issues. Reducing fuel consumption appears not to be driven by the amount of hydrocarbon reserves, but by energy security and climate change issues. Regarding the latter, a plan was proposed by the United Nations for upwards of 80% CO₂ reductions from 1990 levels by 2050. Regulators are beginning to respond by requiring ~25% reductions in CO₂ emissions from light-duty vehicles by 2016 in major world markets, with more to come. The heavy-duty sector is poised to follow. Similarly, fuel policy is aimed at energy diversity (security) and climate change impacts. Emerging biofuel mandates require nominally 5-10% CO₂ life cycle emissions reductions by 2020.
Journal Article

Diesel Emission Control in Review

2009-04-20
2009-01-0121
This summary covers representative developments from 2008 in diesel regulations, engine technology, and NOx, particulate matter (PM), and hydrocarbon (HC) control. Europe is finalizing the Euro VI heavy-duty (HD) regulations for 2013 with the intent of technologically harmonizing with the US. A new particle number standard will be adopted. California is considering tightening the light-duty fleet average to US Tier 2 Bin 2 levels, and CO2 mandates are emerging in Europe for LD, and in the US for all vehicles. LD engine technology is focused on downsizing to deliver lower CO2 emissions, enabled by advances in boost and EGR (exhaust gas recirculation). Emerging concepts are shown for attaining Bin 2 emission levels. HD engines will make deNOx systems optional for even the tightest NOx standards, but deNOx systems enable much lower fuel consumption levels and will likely be used. NOx control is centered on SCR (selective catalytic reduction) for diverse applications.
Journal Article

Diesel Emission Control in Review

2008-04-14
2008-01-0069
This summary covers the developments from 2007 in diesel regulations, engine technology, and NOx and PM control. Regulatory developments are now focused on Europe, where heavy-duty regulations have been proposed for 2013. The regulations are similar in technology needs to US2010. Also, the European Commission proposed the first CO2 emission limits of 130 g/km, which are nearly at parity to the Japanese fuel economy standards. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is centered on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation and system optimization. LNT (lean NOx traps) durability is quantified, and performance enhanced with a sulfur trap.
Technical Paper

Diesel Emission Control in Review

2007-04-16
2007-01-0233
This summary covers the developments from 2006 in diesel regulations, engine combustion, and NOx and PM remediation. Regulatory developments are now focused on Europe, where light-duty Euro 5 and 6 regulations have been proposed for 2009 and 2014, respectively. The regulations are lass stringent than those in the US, but options exist for adopting European vehicles for the US market. Europe is just beginning to look at heavy-duty regulations for 2012 and beyond. Engines are making very impressive progress, with clean combustion strategies in active development mainly for US light-duty application. Heavy-duty research engines are more focused on traditional approaches, and will provide numerous engine/aftertreatment options for hitting the tight US 2010 regulations. NOx control is focusing on SCR (selective catalytic reduction) for diverse applications. Focus is on cold operation, durability, secondary emissions, and system optimization.
Book

Diesel Particulate Filter Technology

2007-03-28
Until recently, the complexity of the Diesel Particulate Filter (DPF) system has hindered its commercial success. Stringent regulations of diesel emissions has lead to advancements in this technology, therefore mainstreaming the use of DPFs in light- and heavy-duty diesel filtration applications. This book covers the latest and most important research in DPF systems, focusing mainly on the advancements of the years 2002-2006. Editor Timothy V. Johnson selected the top 29 SAE papers covering the most significant research in this technology.
Technical Paper

Diesel Emission Control in Review

2006-04-03
2006-01-0030
The paper summarizes the key developments in diesel emission control, generally for 2005. Regulatory targets for the next 10 years and projected advancements in engine technology are used to estimate future emission control needs. Recent NOx control developments on selective catalytic reduction (SCR), lean NOx traps (LNT) and lean NOx catalysts (LNC) are then summarized. Likewise, the paper covers important recent developments on diesel particulate filters (DPFs), summarizing regeneration strategies, new filter and catalyst materials, ash management, and PM measurement. Recent developments in diesel oxidation catalysts are also briefly summarized. Finally, the paper discusses examples of how it is all pulled together to meet the tightest future regulations.
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Fischer-Tropsch Diesel Fuel and Aftertreatment at a Low NOx, Low Power Engine Condition

2005-10-24
2005-01-3764
Previously we reported (SAE Paper 2005-01-0475) that emissions of toxicologically relevant compounds from an engine operating at low NOx conditions using Fischer-Tropsch fuel (FT100) were lower than those emissions from the engine using an ultra-low sulfur (15 PPM sulfur) diesel fuel (BP15). Those tests were performed at two operating modes: Mode 6 (4.2 bar BMEP, 2300 RPM) and Mode 11 (2.62 bar BMEP, 1500 RPM). We wanted to evaluate the effect on emissions of operating the engine at low power (near idle) in conjunction with the low NOx strategy. Specifically, we report on emissions of total hydrocarbon (HC), carbon monoxide (CO), NOx, particulates (PM), formaldehyde, acetaldehyde, benzene, 1,3-butadiene, gas phase polyaromatic hydrocarbons (PAH's) and particle phase PAH's from a DaimlerChrysler OM611 CIDI engine using a low NOx engine operating strategy at Mode 22 (1.0 bar BMEP and 1500 RPM).
Technical Paper

Emissions of Toxicologically Relevant Compounds Using Dibutyl Maleate and Tripropylene Glycol Monomethyl Ether Diesel Fuel Additives to Lower NOx Emissions

2005-04-11
2005-01-0475
A previous paper reported (SAE Paper 2002-01-2884) that it was possible to decrease mode-weighted NOx emissions compared to the OEM calibration with corresponding increases in particulate matter (PM) emissions. These PM emission increases were partially overcome with the use of oxygenated diesel fuel additives. We wanted to know if compounds of toxicological concern were emitted more or less using oxygenated diesel fuel additives that were used in conjunction with a modified engine operating strategy to lower engine-out NOx emissions. Emissions of toxicologically relevant compounds from fuels containing triproplyene glycol monomethyl ether and dibutyl maleate were the same or lower compared to a low sulfur fuel (15 ppm sulfur) even under engine operating conditions designed to lower engine-out NOx emissions.
Technical Paper

Diesel Emission Control Technology 2003 in Review

2004-03-08
2004-01-0070
This paper will review the field of diesel emission control with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author reviews general technology approaches for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Regarding NOx control, SCR (selective catalytic reduction) and LNT (lean NOx traps) progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies demonstrate that high-efficiency systems are within reach in all highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Diesel Emission Control in Review – The Last 12 Months

2003-03-03
2003-01-0039
Driven mainly by tightening of regulations, advance diesel emission control technologies are rapidly advancing. This paper will review the field with the intent of highlighting representative studies that illustrate the state-of-the-art. First, the author makes estimates of the emission control efficiency targets for heavy and light duty applications. Given the emerging significance of ultrafines to health, and to emission control technologies, an overview of the significant developments in ultrafine particulate science is provided, followed by an assessment of filter technology. Major deNOx catalyst developments, in addition to SCR and LNT progress is described. Finally, system integration examples are provided. In general, progress is impressive and studies have demonstrated that high-efficiency systems are within reach in all sectors highway vehicle sectors. Engines are making impressive gains, and will increase the options for emission control.
Technical Paper

Diesel Emission Control: 2001 in Review

2002-03-04
2002-01-0285
The paper covers reported developments from all major conferences in the year 2001 that occurred in the US and Europe and gives a comprehensive overview of the current state-of-the-art in diesel emission control. The latest developments on nature of diesel particulates are summarized. The variety of diesel particulate filter regeneration strategies that will become so important to filter application are reviewed. Filter retrofit and durability issues are addressed. DeNOx catalysts, SCR, NOx traps for diesel, and non-thermal plasma methods are summarized. Integrated NOx/PM systems are described. NOx efficiency and fuel penalty costs for various NOx systems are summarized, as are the published capital costs of some key systems.
X