Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Power-Split HEV Control Strategy Development with Refined Engine Transients

2012-04-16
2012-01-0629
Power-split hybrid-electric vehicles (HEVs) employ two power paths between the internal combustion (IC) engine and the driven wheels routed through gearing and electric machines (EMs) composing an electrically variable transmission (EVT). The EVT allows IC engine control such that rotational speed can be independent of vehicle speed at all times. By breaking the rigid mechanical connection between the IC engine and the driven wheels, the EVT allows the IC engine to operate in the most efficient region of its characteristic brake specific fuel consumption (BSFC) map. If the most efficient IC engine operating point produces more power than is requested by the driver, the excess IC engine power can be stored in the energy storage system (ESS) and used later. Conversely, if the most efficient IC engine operating point does not meet the power request of the driver, the ESS delivers the difference to the wheels through the EMs.
Technical Paper

Novel, Compact Devices for Reducing Fluid-Borne Noise

2011-05-17
2011-01-1533
Hydraulic systems pose a particular problem for noise control. Due to the high speed of sound in hydraulic fluids, components typically designed to reduce fluid-borne noise can easily exceed practical size constraints. This paper presents novel solutions to creating compact and effective noise control devices for fluid power systems. A hydraulic silencer is presented that utilizes a voided polymer lining in lieu of a pressurized bladder. Theoretical modeling is developed which predicts device performance and can assist in future design work. Experimental results are presented to demonstrate the performance of the device. Both voided and non-voided liners are tested to show the effect of the voiding on the performance. In addition, theoretical modeling and experimental results are presented for a prototype Helmholtz resonator that is two orders of magnitude smaller than previously developed devices.
Journal Article

Backward-Looking Simulation of the Toyota Prius and General Motors Two-Mode Power-Split HEV Powertrains

2011-04-12
2011-01-0948
This paper presents a comparative analysis of two different power-split hybrid-electric vehicle (HEV) powertrains using backward-looking simulations. Compared are the front-wheel drive (FWD) Toyota Hybrid System II (THS-II) and the FWD General Motors Allison Hybrid System II (GM AHS-II). The Toyota system employs a one-mode electrically variable transmission (EVT), while the GM system employs a two-mode EVT. Both powertrains are modeled with the same assumed mid-size sedan chassis parameters. Each design employs their native internal combustion (IC) engine because the transmission's characteristic ratios are designed for the respective brake specific fuel consumption (BSFC) maps. Due to the similarities (e.g., power, torque, displacement, and thermal efficiency) between the two IC engines, their fuel consumption and performance differences are neglected in this comparison.
Technical Paper

Experimental Investigation of Dither Control on Effective Braking Torque

2003-05-05
2003-01-1617
Automotive brake squeal is a problem that has plagued the automotive industry for years. Many noise cancellation techniques have been published. One such technique is the use of an external dither signal, that has been shown to suppress automotive disc brake squeal in experiments with a brake dynamometer, but the effect of this control on the system's braking torque has yet to be determined. By imposing a high frequency disturbance normally into the brake pad, squeal is suppressed. There are many studies that lead to the conclusion of a lower effective braking torque due to the high frequency dither control signal. Under the assumption of Hertzian contact stiffness it has been speculated that the loss in braking torque is due to a lowering of the average normal force. There has also been work done that proves that the application of a dither signal in the normal direction eliminates the ‘stick-slip’ oscillation that causes brake squeal by an effective decrease in the friction force.
Technical Paper

Disc Brake Rotor Squeal Suppression Using Dither Control

2001-04-30
2001-01-1605
“Dither” control recently has been experimentally demonstrated to be an effective means to suppress and prevent rotor mode disc brake squeal. Dither control employs a control effort at a frequency higher, oftentimes significantly higher, than the disturbance to be controlled. The control actuator used for the work presented in this paper is a piezoelectric stack actuator located within the piston of a floating caliper brake. The actuator is driven in open-loop control at a frequency greater than the squeal frequency. This actuator configuration and drive signal produces a small fluctuation about the mean clamping force of the brake. The control exhibits a threshold behavior, where complete suppression of brake squeal is achieved once the control effort exceeds a threshold value. This paper examines the dependency of the threshold effort upon the frequency of the dither control signal, applied to the suppression of a 5.6 kHz rotor squeal mode.
Technical Paper

Investigation of Disc Brake Squeal via Sound Intensity and Laser Vibrometry

2001-04-30
2001-01-1604
This paper presents an experimental investigation of methods for disc brake squeal source localization. The underlying data for the localization methods considered here was obtained through the use of a sound intensity probe and a scanning laser vibrometer. The ability to correctly identify the squeal sources is an essential first step in diagnosing brake squeal. Localization methods based upon the use of sound intensity and laser vibrometry, when used together, are shown to converge successfully upon squeal sources. The sound intensity probe is used to spatially locate regions of airborne squeal noise in the near field of the brake rotor and caliper system mounted on a brake squeal dynamometer. The scanning laser vibrometer is then used to further investigate the vibration behavior of the brake assembly within these suspect regions.
X