Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Testing of Heavy Truck Advanced Driver Assistance Systems and Crash Mitigation Systems

2023-04-11
2023-01-0010
Modern heavy vehicles may be equipped with an Advanced Driver Assistance System (ADAS) designed to increase highway safety. Depending on the vehicle or manufacturer, these systems may detect objects in a driver’s blind spot, provide an alert when the ADAS determines that the vehicle is leaving its lane of travel without the use of a turn signal, or notify the driver when certain road signs are detected. ADASs also include adaptive cruise control, which adjusts the vehicle’s set cruise speed to maintain a safe following distance when a slower vehicle is detected ahead of the truck. In addition, the ADAS may have a Collision Mitigation System (CMS) component that is designed to help drivers respond to roadway situations and reduce the severity of crashes. CMSs typically use radar or a combination of radar and optical technologies to detect objects such as vehicles or pedestrians in the vehicle’s path.
Technical Paper

Examination of Detroit AssuranceⓇ 4.0 Video Radar Decision Unit (VRDU) Records for Use in Crash Analysis

2023-04-11
2023-01-0009
The Daimler Detroit AssuranceⓇ 4.0 collision mitigation system is able to assist a driver in various aspects of safely operating their vehicle. One capability is the Active Brake Assist (ABA), which uses the Video Radar Decision Unit (VRDU) to communicate with the front bumper-mounted radar to provide information about potential hazards to the driver. The VRDU may warn the driver of potential hazards and apply partial or full braking, depending on the data being gathered and analyzed. The VRDU also records event data when an ABA event occurs. This data may be extracted from the VRDU using Detroit DiagnosticLink software. This paper presents an overview of the VRDU functionality and examines aspects of VRDU data such as the range and resolution of data elements, the synchronicity or timing of the recorded data, and application of the data for use in the analysis of crashes.
Technical Paper

Examination of Bendix® Data Recording (BDR) Records for Use in Crash Analysis

2023-04-11
2023-01-0012
Electronic control units of Bendix® ABS/ESC and Collision Mitigation Systems have the capability to record event data in the ABS/ESC control unit. Bendix refers to this event data recording functionality as the Bendix Data Recorder (BDR). This paper presents an overview of the BDR functionality and examines the range and resolution of data elements, the synchronicity or timing of the recorded data, and application of the data for use in analyzing crashes. Various tests were performed using trucks equipped with Bendix® Wingman® Fusion™ and were conducted in a manner to trigger BDR records. BDR data was compared to data collected from the J1939 CAN Bus and from Racelogic VBOX data loggers.
Journal Article

Timing and Synchronization of the Event Data Recorded by the Electronic Control Modules of Commercial Motor Vehicles - DDEC V

2013-04-08
2013-01-1267
It is well recognized that Heavy Vehicle Event Data Recorder (HVEDR) technology has been incorporated in the Electronic Control Modules (ECMs) on many on-highway commercial motor vehicles. The dynamic time-series data recorded by these HVEDRs typically include vehicle speed, engine speed, brake and clutch pedal status, and accelerator pedal position. With specific respect to Detroit Diesel ECMs, data are recorded surrounding certain events at a rate of 1.0 Hz. In this research, controlled testing was conducted to determine the time differences between the values being generated by the sourcing sensors and the interpreted data being broadcast on the vehicle's SAE J1939 controller area network (CAN). To accomplish this, raw sensor data as provided to the ECM was monitored, as were the subsequent J1939 CAN transmissions from the ECM.
Technical Paper

Simulating the Effect of Collision-Related Power Loss on the Event Data Recorders of Heavy Trucks

2010-04-12
2010-01-1004
Event Data Recorder (EDR) technology has been incorporated into the Electronic Control Modules (ECMs) of many on-highway heavy trucks. One benefit of this technology is its applicability to vehicle collision investigation and reconstruction ( Goebelbecker & Ferrone, 2000 ; van Nooten & Hrycay, 2005 ). However, collisions that cause extensive damage to the truck may cause a loss of electrical power to the ECM, which might interrupt the data storage process. This research is an attempt to determine the effects of power loss on heavy vehicle ECMs 1 , and the associated effects on data collected by the EDR function. Controlled testing was conducted with Detroit Diesel, Mercedes, Mack, Cummins, and Caterpillar engines, and power failures were created by artificially interrupting power between the vehicle's battery and ECM at predetermined intervals. EDR data from the test vehicles were extracted after each test, and the presence or absence of new data was examined.
Journal Article

Data Sources and Analysis of a Heavy Vehicle Event Data Recorder – V-MAC III

2009-04-20
2009-01-0881
Heavy trucks can have the capability to record vehicle status and performance data. In many applications, this capability is intrinsic to the powerplant’s electronic controls. However little information has been published regarding Heavy Vehicle Event Data Recorder (HVEDR) data obtained from Mack trucks equipped with the V-MAC vehicle electronic control units. This study is focused on data from Mack trucks and the influence of wheel slip on the HVEDR-reported vehicle speed. Additionally, the influence of variables such as initial speed and loaded condition are discussed. A late model Class 8 Mack was instrumented with a calibrated data acquisition package (DAQ) and put through a series of tests so that the HVEDR data could be compared to the data collected by the DAQ.
X