Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Achieving Ultra-Low Oil Consumption in Opposed Piston Two-Stroke Engines

2019-01-15
2019-01-0068
The opposed piston two-stroke (OP2S) engine architecture is widely recognized for its improved fuel efficiency relative to a four-stroke engine. Achates Power Inc. seeks to demonstrate the market readiness of the OP2S engine by proving competitive in other important areas, one of which is oil consumption. Achieving oil consumption competitive to modern four-stroke engines is thus a key step in bringing OP2S technology to market. Two-stroke engines have historically suffered from higher engine lube oil consumption and subsequent emissions and durability challenges. This is primarily due to two main features of traditional two-stroke engines; the direct interaction of the piston skirt and rings with the intake and/or exhaust ports, which results in a direct leak path for lube oil to the combustion chamber and/or exhaust manifold, and crankcase-scavenged architectures which entrain oil into air being pumped through the crankcase.
Journal Article

Achieving Bharat Stage VI Emissions Regulations While Improving Fuel Economy with the Opposed-Piston Engine

2017-01-10
2017-26-0056
The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
Technical Paper

Opposed-Piston 2-Stroke Multi-Cylinder Engine Dynamometer Demonstration

2015-01-14
2015-26-0038
With mounting pressure on Indian manufacturers to meet future fuel economy and emissions mandates-including the recently passed Corporate Average Fuel Consumption (CAFC) standards for light-duty vehicles-many are evaluating new technologies. However, to provide an economically sustainable solution, these technologies must increase efficiency without increasing cost. One promising solution to meet both current, and future, standards is the opposed-piston engine. Widely used in the early 20th century for on-road applications, use of the opposed-piston engine waseventually discontinued due to challenges with emissions and oil control. But advancements in computer-aided engineering tools, combined with state-of-the-art engineering practices, has enabled Achates Power to develop a modern opposed-piston diesel engine architecture that is clean, significantly more fuel efficient and less expensive to manufacture than today's four-stroke engines.
Technical Paper

Meeting Stringent 2025 Emissions and Fuel Efficiency Regulations with an Opposed-Piston, Light-Duty Diesel Engine

2014-04-01
2014-01-1187
With current and pending regulations-including Corporate Average Fuel Economy (CAFE) 2025 and Tier 3 or LEV III-automakers are under tremendous pressure to reduce fuel consumption while meeting more stringent NOx, PM, HC and CO standards. To meet these standards, many are investing in expensive technologies-to enhance conventional, four-stroke powertrains-and in significant vehicle improvements. However, others are evaluating alternative concepts like the opposed-piston, two-stroke engine. First manufactured in the 1890s-and once widely used for ground, marine and aviation applications-the historic opposed-piston, two-stroke (OP2S) engine suffered from poor emissions and oil control. This meant that its use in on-highway applications ceased with the passage of modern emissions standards.
Technical Paper

Practical Applications of Opposed-Piston Engine Technology to Reduce Fuel Consumption and Emissions

2013-11-27
2013-01-2754
Opposed-piston (OP) engines have attracted the interest of the automotive industry in recent years because of their potential for significantly improved fuel economy. Opposed-piston, two-stroke (OP2S) engine technology amplifies this fuel efficiency advantage and offers lower cost and weight due to fewer parts. While OP engines can help automotive manufacturers comply with current, and future, efficiency standards, there is still work required to prepare the engines for production. This work is mainly related to packaging and durability. At Achates Power, the OP2S technology is being developed for various applications such as commercial vehicles (heavy-and medium-duty), SUVs, pick-up trucks and passenger cars (i.e. light-duty), military vehicles, large ships and stationary power (generator sets). Included in this paper is a review of the previously published OP engine efficiency advantages (thermodynamics, combustion and air system) as well as the architecture's historical challenges.
X