Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 19 of 19
Technical Paper

Demonstration of a Novel, Off Road, Diesel Combustion Concept

2016-04-05
2016-01-0728
There are numerous off-road diesel engine applications. In some applications there is more focus on metrics such as initial cost, packaging and transient response and less emphasis on fuel economy. In this paper a combustion concept is presented that may be well suited to these applications. The novel combustion concept operates in two distinct operation modes: lean operation at light engine loads and stoichiometric operation at intermediate and high engine loads. One advantage to the two mode approach is the ability to simplify the aftertreatment and reduce cost. The simplified aftertreatment system utilizes a non-catalyzed diesel particulate filter (DPF) and a relatively small lean NOx trap (LNT). Under stoichiometric operation the LNT has the ability to act as a three way catalyst (TWC) for excellent control of hydrocarbons (HC), carbon monoxide (CO) and nitrogen oxides (NOx).
Technical Paper

A High-Energy Continuous Discharge Ignition System for Dilute Engine Applications

2013-04-08
2013-01-1628
SwRI has developed the DCO® ignition system, a unique continuous discharge system that allows for variable duration/energy events in SI engines. The system uses two coils connected by a diode and a multi-striking controller to generate a continuous current flow through the spark plug of variable duration. A previous publication demonstrated the ability of the DCO system to improve EGR tolerance using low energy coils. In this publication, the work is extended to high current (≻ 300 mA/high energy (≻ 200 mJ) coils and compared to several advanced ignition systems. The results from a 4-cylinder, MPI application demonstrate that the higher current/higher energy coils offer an improvement over the lower energy coils. The engine was tested at a variety of speed and load conditions operating at stoichiometric air-fuel ratios with gasoline and EGR dilution.
Technical Paper

Air-Assisted Direct Injection Diesel Investigations

2013-04-08
2013-01-0907
Enhancement of fuel/air mixing is one path towards enabling future diesel engines to increase efficiency and control emissions. Air-assist fuel injections have shown potential for low pressure applications and the current work aims to extend air-assist feasibility understanding to high pressure environments. Analyses were completed and carried out for traditional high pressure fuel-only, internal air-assist, and external air-assist fuel/air mixing processes. A combination of analytical 0-D theory and 3D CFD were used to help understand the processes and guide the design of the air-assisted setup. The internal air-assisted setup was determined to have excellent liquid fuel vaporization, but poorer fuel dispersion than the traditional high-pressure fuel injections.
Technical Paper

3D-Semi 1D Coupling for a Complete Simulation of an SCR System

2013-04-08
2013-01-1575
The presented work describes how numerical modeling techniques were extended to simulate a full Selective Catalytic Reduction (SCR) NOx aftertreatement system. Besides predicting ammonia-to-NOX ratio (ANR) and uniformity index (UI) at the SCR inlet, the developed numerical model was able to predict NOx reduction and ammonia slip. To reduce the calculation time due to the complexity of the chemical process and flow field within the SCR, a semi-1D approach was developed and applied to model the SCR catalyst, which was subsequently coupled with a 3D model of the rest of the exhaust system. Droplet depletion of urea water solution (UWS) was modeled by vaporization and thermolysis techniques while ammonia generation was modeled by the thermolysis and hydrolysis method. Test data of two different SCR systems were used to calibrate the simulation results. Results obtained using the thermolysis method showed better agreement with test data compared to the vaporization method.
Technical Paper

Factors Affecting Heat Transfer in a Diesel Engine: Low Heat Rejection Engine Revisited

2013-04-08
2013-01-0875
A large amount of the heat generated during the engine combustion process is lost to the coolant system through the surrounding metal parts. Therefore, there is a potential to improve the overall cycle efficiency by reducing the amount of heat transfer from the engine. In this paper, a Computational Fluid Dynamics (CFD) tool has been used to evaluate the effects of a number of design and operating variables on total heat loss from an engine to the coolant system. These parameters include injection characteristics and orientation, shape of the piston bowl, percentage of EGR and material property of the combustion chamber. Comprehensive analyses have been presented to show the efficient use of the heat retained in the combustion chamber and its contribution to improve thermal efficiency of the engine. Finally, changes in design and operating parameters have been suggested based on the analytical results to improve heat loss reduction from an engine.
Journal Article

The Interaction of Fuel Anti-Knock Index and Cooled EGR on Engine Performance and Efficiency

2012-04-16
2012-01-1149
Experiments were performed on a 2.4L boosted, MPI gasoline engine, equipped with a low-pressure loop (LPL) cooled EGR system and an advanced ignition system, using fuels with varying anti-knock indices. The fuels were blends of 87, 93 and 105 Anti-Knock Index (AKI) gasoline. Ignition timing and EGR sweeps were performed at various loads to determine the tradeoff between EGR level and fuel octane rating. The resulting engine data was analyzed to establish the relationship between the octane requirement and the level of cooled EGR used in a given application. In addition, the combustion difference between fuels was examined to determine the effect that fuel reactivity, in the form of anti-knock index (AKI), has on EGR tolerance and burn rate. The results indicate that the improvement in effective AKI of the fuel from using EGR is constant across commercial grade gasolines at about 0.5 ON per % EGR.
Journal Article

Boosting Simulation of High Efficiency Alternative Combustion Mode Engines

2011-04-12
2011-01-0358
Four high-efficiency alternative combustion modes were modeled to determine the potential brake thermal efficiency (BTE) relative to a traditional lean burn compression ignition diesel engine with selective catalytic reduction (SCR) aftertreatment. The four combustion modes include stoichiometric pilot-ignited gasoline with EGR dilution (SwRI HEDGE technology), dual fuel premixed compression ignition (University of Wisconsin), gasoline partially premixed combustion (Lund University), and homogenous charge compression ignition (HCCI) (SwRI Clean Diesel IV). For each of the alternative combustion modes, zero-D simulation of the peak torque condition was used to show the expected BTE. For all alternative combustion modes, simulation showed that the BTE was very dependent on dilution levels, whether air or EGR. While the gross indicated thermal efficiency (ITE) could be shown to improve as the dilution was increased, the required pumping work decreased the BTE at EGR rates above 40%.
Journal Article

A Continuous Discharge Ignition System for EGR Limit Extension in SI Engines

2011-04-12
2011-01-0661
A novel continuous inductive discharge ignition system has been developed that allows for variable duration ignition events in SI engines. The system uses a dual-coil design, where two coils are connected by a diode, combined with the multi-striking coil concept, to generate a continuous current flow through the spark plug. The current level and duration can be regulated by controlling the number of re-strikes that each coil performs or the energy density the primary coils are charged to. Compared to other extended duration systems, this system allows for fairly high current levels during the entire discharge event while avoiding the extremely high discharge levels associated with other, shorter duration, high energy ignition systems (e.g. the plasma jet [ 1 , 2 ], railplug [ 3 ] or laser ignition systems [ 4 , 5 , 6 , 7 , 8 ].
Technical Paper

The Effect of Sparkplug Design on Initial Flame Kernel Development and Sparkplug Performance

2006-04-03
2006-01-0224
Tests were conducted on a variety of commercially available spark plugs to determine the influence of igniter design on initial kernel formation and overall performance. Flame kernel formation was investigated using high-speed schlieren visualization. The flame growth rate was quantified using the area of the burned gas region. The results showed that kernel growth rate was heavily influenced by electrode geometry and configuration. The igniters were also tested in a bomb calorimeter to determine the levels of supplied and delivered energy. The typical ratio of supplied to delivered energy was 20% and igniters with a higher internal resistance delivered more energy and had faster kernel formation rates. The exception was plugs with large amounts of conductive mass near the electrodes, which had very slow kernel formation rates despite relatively high delivered energy levels.
Technical Paper

Laser Ignition in a Pre-Mixed Engine: The Effect of Focal Volume and Energy Density on Stability and the Lean Operating Limit

2005-10-24
2005-01-3752
A series of tests using an open beam laser ignition system in an engine run on pre-mixed, gaseous fuels were performed. The ignition system for the engine was a 1064 nm Nd:YAG laser. A single cylinder research engine was run on pre-mixed iso-butane and propane to determine the lean limit of the engine using laser ignition. In addition, the effect of varying the energy density of the ignition kernel was investigated by changing the focal volume and by varying laser energy. The results indicate that for a fixed focal volume, there is a threshold beyond which increasing the energy density [kJ/m3] yields little or no benefit. In contrast, increasing the energy density by reducing the focal volume size decreases lean performance once the focal volume is reduced past a certain point. The effect of ignition location relative to different surfaces in the engine was also investigated. The results show a slight bias in favor of igniting closer to a surface with low thermal conductivity.
Technical Paper

The Effect of Water on Soot Formation Chemistry

2005-10-24
2005-01-3850
A combined, experimental and numerical program is presented. This work summarizes an internal research effort conducted at Southwest Research Institute. Meeting new, stringent emissions regulations for diesel engines requires a way to reduce NOx and soot emissions. Most emissions reduction strategies reduce one pollutant while increasing the other. Water injection is one of the few promising emissions reduction techniques with the potential to simultaneously reduce soot and NOx in diesel engines. While it is widely accepted that water reduces NOx via a thermal effect, the mechanisms behind the reduction of soot are not well understood. The water could reduce the soot via physical, thermal, or chemical effects. To aid in developing water injection strategies, this project's goal was to determine how water enters the soot formation chemistry.
Technical Paper

Performance Predictions for High Efficiency Stoichiometric Spark Ignited Engines

2005-04-11
2005-01-0995
Southwest Research Institute (SwRI) is exploring the feasibility of extending the performance and fuel efficiency of the spark ignition (SI) engine to match that of the emission constrained compression (CI) engine, whilst retaining the cost effective 3-way stoichiometric aftertreatment systems associated with traditional SI light duty engines. The engine concept, which has a relatively high compression ratio and uses heavy EGR, is called “HEDGE”, i.e. High Efficiency Durable Gasoline Engine. Whereas previous SwRI papers have been medium and heavy duty development focused, this paper uses results from simulations, with some test bed correlations, to predict multicylinder torque curves, brake thermal efficiency and NOx emissions as well as knock limit for light and medium duty applications.
Technical Paper

The Heavy Duty Gasoline Engine - A Multi-Cylinder Study of a High Efficiency, Low Emission Technology

2005-04-11
2005-01-1135
SwRI has developed a new technology concept involving the use of high EGR rates coupled with a high-energy ignition system in a gasoline engine to improve fuel economy and emissions. Based on a single-cylinder study [1], this study extends the concept of a high compression ratio gasoline engine with EGR rates > 30% and a high-energy ignition system to a multi-cylinder engine. A 2000 MY Isuzu Duramax 6.6 L 8-cylinder engine was converted to run on gasoline with a diesel pilot ignition system. The engine was run at two compression ratios, 17.5:1 and 12.5:1 and with two different EGR systems - a low-pressure loop and a high pressure loop. A high cetane number (CN) diesel fuel (CN=76) was used as the ignition source and two different octane number (ON) gasolines were investigated - a pump grade 91 ON ((R+M)/2) and a 103 ON ((R+M)/2) racing fuel.
Technical Paper

Virtual Cylinder Pressure Sensor (VCPS) with Individual Variable-Oriented Independent Estimators

2005-04-11
2005-01-0059
Tremendous amount of useful information can be extracted from the cylinder pressure signal for engine combustion control. However, the physical cylinder pressure sensors are undesirably expensive and their health need to be monitored for fault diagnostic purpose as well. This paper presents the results of the development of a virtual cylinder pressure sensor (VCPS) with individual variable-oriented independent estimators. Two neural network-based independent cylinder pressure related variable estimators were developed and verified at steady state. The results show that these models can predict the variables correctly compared with the extracted variables from the measured physical cylinder pressure sensor signal. Good generalization capabilities of the developed models are observed in the sense that the models work well not only for the training data set but also for the new inputs that they have never been exposed to before.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

Measurement of Laminar Burning Velocity of Multi-Component Fuel Blends for Use in High-Performance SI Engines

2003-10-27
2003-01-3185
A technique was developed for measuring the Laminar Burning Velocity (LBV) of multi-component fuel blends for use in high-performance spark-ignition engines. This technique involves the use of a centrally-ignited spherical combustion chamber, and a complementary analysis code. The technique was validated by examining several single-component fuels, and the computational procedure was extended to handle multi-component fuels without requiring detailed knowledge of their chemical composition. Experiments performed on an instrumented high-speed engine showed good agreement between the observed heat-release rates of the fuels and their predicted ranking based on the measured LBV parameters.
Technical Paper

Vaporization of Individual Fuel Drops on a Heated Surface: A Study of Fuel-Wall Interactions within Direct-Injected Gasoline (DIG) Engines

2002-03-04
2002-01-0838
The impingement of liquid fuel onto the surfaces of the combustion chamber (wall-wetting) has been shown to be an important source of HC emissions from direct-injected SI engines, and can even result in pool fires and diffusion flames. Some degree of wall wetting, particularly on the piston top, is believed to occur in every current DIG engine design, but the behavior of the wall-bound fuel throughout the engine cycle is poorly understood. The goal of this study was to gain a better understanding of the fundamental interaction between liquid fuel droplets and the piston under engine-like conditions, by observing the vaporization of individual fuel drops as the surface temperature and ambient pressures were varied in a controlled environment. The vaporization of several single-component fuels, binary mixtures, and multi-component fuels was examined in the range of surface temperatures between 50 and 300 °C and ambient pressures between 50 and 1270 kPa (abs).
Technical Paper

Investigation of Intake Timing Effects on the Cold Start Behavior of a Spark Ignition Engine

1999-10-25
1999-01-3622
Recent advances in Variable Valve Actuation (VVA) methods have led to development of optimized valve timing strategies for a broad range of engine operating conditions. This study focuses on the cold-start period, which begins at engine cranking and lasts for approximately 1 minute thereafter. Cold-start is characterized by poor mixture preparation due to low component temperatures, aggravated by fixed valve timing which has historically been compromised to give optimal warm engine operation. In this study, intake cam phasing was varied to explore the potential benefit in hydrocarbon emissions and driveability obtainable for cold-start. A simple experimental approach was used to investigate the potential emissions benefits realizable through intake cam phasing. High speed cylinder pressure and Fast Flame Ionization Detector (FFID) engine-out hydrocarbon (HC) measurements were made to characterize instantaneous cold-start emissions and driveability.
Technical Paper

Further Experiments on the Effects of In-Cylinder Wall Wetting on HC Emissions from Direct Injection Gasoline Engines

1999-10-25
1999-01-3661
A recently developed in-cylinder fuel injection probe was used to deposit a small amount of liquid fuel on various surfaces within the combustion chamber of a 4-valve engine that was operating predominately on liquefied petroleum gas (LPG). A fast flame ionization detector (FFID) was used to examine the engine-out emissions of unburned and partially-burned hydrocarbons (HCs). Injector shut-off was used to examine the rate of liquid fuel evaporation. The purpose of these experiments was to provide insights into the HC formation mechanism due to in-cylinder wall wetting. The variables investigated were the effects of engine operating conditions, coolant temperature, in-cylinder wetting location, and the amount of liquid wall wetting. The results of the steady state tests show that in-cylinder wall wetting is an important source of HC emissions both at idle and at a part load, cruise-type condition. The effects of wetting location present the same trend for idle and part load conditions.
X