Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 19 of 19
Journal Article

GDCI Multi-Cylinder Engine for High Fuel Efficiency and Low Emissions

2015-04-14
2015-01-0834
A 1.8L Gasoline Direct Injection Compression Ignition (GDCI) engine was tested over a wide range of engine speeds and loads using RON91 gasoline. The engine was operated with a new partially premixed combustion process without combustion mode switching. Injection parameters were used to control mixture stratification and combustion phasing using a multiple-late injection strategy with GDi-like injection pressures. At idle and low loads, rebreathing of hot exhaust gases provided stable compression ignition with very low engine-out NOx and PM emissions. Rebreathing enabled reduced boost pressure, while increasing exhaust temperatures greatly. Hydrocarbon and carbon monoxide emissions after the oxidation catalyst were very low. Brake specific fuel consumption (BSFC) of 267 g/kWh was measured at the 2000 rpm-2bar BMEP global test point.
Journal Article

Development of a Gasoline Direct Injection Compression Ignition (GDCI) Engine

2014-04-01
2014-01-1300
In previous work, Gasoline Direct Injection Compression Ignition (GDCI) has demonstrated good potential for high fuel efficiency, low NOx, and low PM over the speed-load range using RON91 gasoline. In the current work, a four-cylinder, 1.8L engine was designed and built based on extensive simulations and single-cylinder engine tests. The engine features a pent roof combustion chamber, central-mounted injector, 15:1 compression ratio, and zero swirl and squish. A new piston was developed and matched with the injection system. The fuel injection, valvetrain, and boost systems were key technology enablers. Engine dynamometer tests were conducted at idle, part-load, and full-load operating conditions. For all operating conditions, the engine was operated with partially premixed compression ignition without mode switching or diffusion controlled combustion.
Technical Paper

Innovative Sprays and Particulate Reduction with GDi Injectors

2014-04-01
2014-01-1441
Innovative nozzle hole shapes for inwardly opening multi-hole gasoline direct injectors offer opportunities for improved mixture formation and particulate emissions reduction. Compared to increased fuel pressure, an alternative associated with higher system costs and increased pumping work, nozzle hole shaping simply requires changes to the injector nozzle shape and may have the potential to meet Euro 6 particulate regulations at today's 200 bar operating pressure. Using advanced laser drilling technology, injectors with non-round nozzle holes were built and tested on a single-cylinder engine with a centrally-mounted injector location. Particulate emissions were measured and coking deposits were imaged over time at several operating fuel pressures. This paper presents spray analysis and engine test results showing the potential benefits of alternative non-round nozzle holes in reducing particulate emissions and enhancing robustness to coking with various operating fuel pressures.
Technical Paper

The Effects of GDi Fuel Pressure on Fuel Economy

2014-04-01
2014-01-1438
To meet future particulate number regulations, one path being investigated is higher fuel pressures for direct injection systems. At operating pressures of 30 MPa to 40 MPa, the fuel system components must be designed to withstand these pressures and additional power is required by the pump to pressurize the fuel to higher pressures than the nominal 15MPa to 20MPa in use today. This additional power to the pump can affect vehicle fuel economy, but may be partially offset by increases in combustion efficiency due to improved spray mixture preparation. This paper examines the impact on fuel economy from increased system fuel pressures from a combination of test results and simulations. A GDi pump and valvetrain model has been developed and correlated to existing pump torque measurements and subsequently used to predict the increase in torque and associated impact on fuel economy due to higher GDi system pressures.
Technical Paper

Sensing Exhaust NO2 Emissions Using the Mixed Potential Principle

2014-04-01
2014-01-1487
NOx aftertreatment is an essential subsystem to enable diesel and lean gasoline engines to meet emissions regulations. A selective catalytic reduction (SCR) system, which uses urea to create ammonia (NH3) for NOx reduction, is one popular form of NOx aftertreatment system. These urea based NOx aftertreatment systems can benefit from closed-loop control when appropriate NH3, NOx, or NO2 exhaust gas sensors are available. For example, knowing exhaust NO2 emissions after a diesel oxidation catalyst can help the urea dosing strategy to maximize the efficiency of a urea SCR system. Such sensing capability, combined with ammonia sensing, can provide enhanced closed-loop control of the SCR system as well as information for on-board diagnosis. This paper covers Delphi's progress in developing an exhaust NO2 sensor.
Journal Article

Boost System Development for Gasoline Direct-Injection Compression-Ignition (GDCI)

2013-04-08
2013-01-0928
Intake boosting is an important method to improve fuel economy of internal combustion engines. Engines can be down-sized, down-speeded, and up-loaded to reduce friction losses, parasitic losses, and pumping losses, and operate at speed-load conditions that are thermodynamically more efficient. Low-temperature combustion engines (LTE) also benefit from down-sizing, down-speeding, and up-loading, but these engines exhibit very low exhaust enthalpy to drive conventional turbochargers. This paper describes modeling, evaluation, and selection of an efficient boost system for a 1.8L four-cylinder Gasoline Direct-Injection Compression-Ignition (GDCI) engine. After a preliminary concept selection phase the model was used to develop the boost system parameters to achieve full-load and part-load engine operation objectives.
Technical Paper

Cold Performance Challenges with CNG PFI Injectors

2013-04-08
2013-01-0863
Compressed Natural Gas (CNG) is gaining popularity as a viable alternate transportation fuel in many regions of the world. Injectors capable of delivering pressurized gaseous fuels have been developed for this emerging vehicular market segment. CNG fuel injectors must be designed to be compatible and durable with a very low lubricity gaseous fuel to meet automotive OEM life expectancy standards. Traditional gasoline injectors utilize a “hard/hard” sealing configuration, in which both the valve and seat are constructed out of hard metals. When properly lubricated with liquid fuels, these valves can meet vehicular injector leak and flow durability requirements. However, metal valves operating without lubrication can experience excessive wear, which leads to unacceptable levels of gas leakage and flow shifts. The use of elastomer-to-metal sealing surfaces minimizes leakage, but may cause cold ambient operation challenges.
Technical Paper

Part-Load Operation of Gasoline Direct-Injection Compression Ignition (GDCI) Engine

2013-04-08
2013-01-0272
Previous studies of gasoline direct-injection compression-ignition (GDCI) showed good potential for very high efficiency, low NOx, and low PM over the full speed-load range. Low-temperature combustion was achieved using multiple-late injection (MLI), intake boost, and cooled EGR. Advanced injection and valvetrain were key enablers. In the current study, a new piston was developed and matched with the injection system. Single-cylinder engine tests were conducted with the objective to reduce injection pressure, intake boost, and swirl levels. Results showed that ISFC could be further improved while maintaining low levels of NOx, PM, and combustion noise. Efficiency loss analysis indicated a very efficient thermodynamic process with greatly reduced heat losses. Injection parameters could be used to control combustion phasing with good combustion stability. Engine simulations were performed to develop a practical boost system for GDCI.
Journal Article

Sensing of Particulate Matter for On-Board Diagnosis of Particulate Filters

2012-04-16
2012-01-0372
New particulate sensing technologies are currently being readied for production to meet the on-board diagnostic (OBD) regulations associated with diagnosing diesel particulate filter (DPF) efficiency. The threshold levels for diagnosis have been tightened starting in 2013, requiring a new approach beyond the current techniques which often rely on differential pressure sensing across the filter. A new sensor has been developed to directly detect the particles passing through the DPF and estimate the cumulative particle flow. Using this information, an estimate can be made of the filter's efficiency and an associated diagnosis of its ability to meet emissions requirements. In this paper we will discuss the sensor's operating principle, accuracy and repeatability.
Journal Article

Full-Time Gasoline Direct-Injection Compression Ignition (GDCI) for High Efficiency and Low NOx and PM

2012-04-16
2012-01-0384
A gasoline compression-ignition combustion system is being developed for full-time operation over the speed-load map. Low-temperature combustion was achieved using multiple late injection (MLI), intake boost, and moderate EGR for high efficiency, low NOx, and low particulate emissions. The relatively long ignition delay and high volatility of RON 91 pump gasoline combined with an advanced injection system and variable valve actuation provided controlled mixture stratification for low combustion noise. Tests were conducted on a single-cylinder research engine. Design of Experiments and response surface models were used to evaluate injection strategies, injector designs, and various valve lift profiles across the speed-load operating range. At light loads, an exhaust rebreathing strategy was used to promote autoignition and maintain exhaust temperatures. At medium loads, a triple injection strategy produced the best results with high thermal efficiency.
Journal Article

Gasoline Direct Injection Compression Ignition (GDCI) - Diesel-like Efficiency with Low CO2 Emissions

2011-04-12
2011-01-1386
A single-cylinder engine was used to study the potential of a high-efficiency combustion concept called gasoline direct-injection compression-ignition (GDCI). Low temperature combustion was achieved using multiple injections, intake boost, and moderate EGR to reduce engine-out NOx and PM emissions engine for stringent emissions standards. This combustion strategy benefits from the relatively long ignition delay and high volatility of regular unleaded gasoline fuel. Tests were conducted at 6 bar IMEP - 1500 rpm using various injection strategies with low-to-moderate injection pressure. Results showed that triple injection GDCI achieved about 8 percent greater indicated thermal efficiency and about 14 percent lower specific CO2 emissions relative to diesel baseline tests on the same engine. Heat release rates and combustion noise could be controlled with a multiple-late injection strategy for controlled fuel-air stratification. Estimated heat losses were significantly reduced.
Technical Paper

High Frequency Ignition System for Gasoline Direct Injection Engines

2011-04-12
2011-01-1223
A high-frequency electrical resonance-based ignition concept is in development to replace conventional spark ignition functionality for gasoline engines employing various types of fuel injection methods. The concept provides the benefit of a continuous discharge phase and the electrical power of the discharge can also be adjusted to the needs of the combustion conditions. This concept employs an alternative method of generating high voltages, using inductors and capacitors trimmed such that the supplied energy steadily increases the output voltage. This configuration is widely known as Tesla transformer and has been engineered to operate in a modern gasoline engine combustion environment. This development allows very high break down voltages to be generated and the power into the spark itself can be influenced.
Journal Article

Fuel Efficiency Improvements from Lean, Stratified Combustion with a Solenoid Injector

2009-04-20
2009-01-1485
In light of the growing emphasis on CO2 emissions reduction, Delphi has undertaken an internal development program to show the fuel economy benefits of lean, stratified combustion with its outwardly-opening solenoid injector in a vehicle environment. This paper presents the status of this ongoing development activity which is not yet completed. Progress to date includes a logical progression from single- and multi-cylinder dynamometer engines to the vehicle environment. The solenoid-actuated injector used in this development has an outwardly-opening valve group to generate a hollow-cone spray with a stable, well-defined recirculation zone to support spray-guided stratification in the combustion chamber. The engine management system of the development vehicle was modified from series-production configuration by changing the engine control unit to permit function development and calibration.
Technical Paper

Cylinder Pressure-Based Control of Pre-Mixed Diesel Combustion

2007-04-16
2007-01-0773
Implementation of real-time combustion feedback for use in closed-loop combustion control is a technology that has potential to assist in the successful production implementation of advanced diesel combustion modes. Low-temperature, pre-mixed diesel combustion is presently of interest because it offers the ability to lower the engine-out emissions of oxides of nitrogen (NOx) and particulate matter (PM). The need for lowering these two emissions is driven by tighter regulations enacted worldwide, especially the NOx limits in the United States. Reducing engine-out emissions eases the need for additional exhaust aftertreatment devices and their associated cost and mass. In this paper we will describe an experimental cylinder pressure-based control system and present both steady-state and transient results from a diesel engine employing a pre-mixed type of combustion.
Technical Paper

Logistics and Capability Implications of a Bradley Fighting Vehicle with a Fuel Cell Auxiliary Power Unit

2004-03-08
2004-01-1586
Modern military ground vehicles are dependent not only on armor and munitions, but also on their electronic equipment. Advances in battlefield sensing, targeting, and communications devices have resulted in military vehicles with a wide array of electrical and electronic loads requiring power. These vehicles are typically designed to supply this power via a main internal combustion engine outfitted with a generator. Batteries are also incorporated to allow power to be supplied for a limited time when the engine is off. It is desirable to use a subset of the battlefield electronics in the vehicle while the engine is off, in a mode called “silent watch.” Operating time in this mode is limited, however, by battery capacity unless an auxiliary power unit (APU) is used or the main engines are restarted.
Technical Paper

New On-Board Power Generation Technologies for Automotive Auxiliary Power Units

2003-06-23
2003-01-2256
Improving fuel economy, emissions, passenger comfort and convenience, safety, and vehicle performance in the automobile is resulting in the growth of electrical loads. In order to meet these electrical load demands and to meet the requirement of power generation when the engine is off, several technologies are on the horizon for on-board power generation in the vehicles. In this paper, new on-board power generation technologies based on the solid oxide fuel cell (SOFC), proton exchange membrane (PEM) fuel cell, thermo-photovoltaic (TPV) system, and diamond or carbon nanostructures are compared in terms power density, cost, and long term feasibility for automotive applications.
Technical Paper

A Comparative Study of the Production Applications of Hybrid Electric Powertrains

2003-06-23
2003-01-2307
In this paper, a comparative study of the production applications of hybrid electric powertrains is presented. Vehicles studied include the Toyota Prius, Honda Insight, Toyota Estima, Toyota Crown, Honda Civic Hybrid, and Nissan Tino. The upcoming Ford Escape Hybrid and General Motors Parallel Hybrid Truck (PHT) will also be included, although advance information is limited. The goal of this paper is to look at what hybrid drivetrain architectures have actually been selected for production and what are the underlying details of these drivetrains. Since hybridizing a powertrain involves significant changes, the powertrain architectures are presented in diagram form, with analysis as to the similarities and advantages represented in these architectures. The specific hybrid functions used to save fuel are discussed. Peak power-to-weight ratio and degree of hybridization are plotted for the vehicles. System voltage versus electric power level are also plotted and analyzed.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Dual-Voltage Electrical System with a Fuel Cell Power Unit

2000-08-21
2000-01-3067
Fuel cells show great promise in generating electrical power for a variety of uses. In the automotive realm, one focus has been on the use of fuel cells for primary vehicle propulsion. Another emerging application is the fuel cell as the primary provider of electrical power to the vehicle, augmenting or replacing the traditional alternator, while producing higher power levels. The advantage of the fuel cell in this role is that the fuel cell operation is de-coupled from that of the engine. High power levels can be achieved independent of engine speed and power can be produced without the engine running. This paper examines the application of a fuel cell auxiliary power unit (APU) to a dual-voltage 42V/14V automotive electrical system meeting the evolving 42V PowerNet specifications. An architecture for this electrical system is presented, followed by a sizing analysis to properly match the fuel cell stack to the voltage of the PowerNet and to a 42V battery pack.
X