Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Combustion Regimes in the Chrysler Multi-Air Multi-Fuel Engine, Part 2 - Diesel Micro-Pilot Combustion

2023-04-11
2023-01-0222
This paper is the second of three papers stemming from a dual fuel Chrysler prototype engine which uses both diesel and gasoline direct injection running at near-stoichiometric conditions, as part of a project to explore the viability of incorporating an engine platform which utilizes low temperature combustion regimes into a modern automotive application. The combustion system was designed to tolerate high rates of EGR while maintaining combustion stability by using high charge motion intake port and a high energy ignition system. The engine ran on highly dilute SI combustion at low loads, Diesel Assisted Spark Ignition at medium loads and a transition to Diesel Micro Pilot ignition at medium to high load. The first paper explored the use of Diesel Assisted Spark Ignited at moderate loads 6.5 bar to 12.7 bar BMEP and the third paper to be published in 2024 will explore fuel property effects (mainly Cetane and Octane) through the use of alternative fuels.
Technical Paper

Combustion Regimes in the Chrysler Multi-Air Multi-Fuel Engine, Part 1 - Diesel Assisted Spark Ignited

2023-04-11
2023-01-0231
This paper is the first of three papers stemming from a dual fuel Chrysler prototype engine which uses both diesel and gasoline direct injection running at stoichiometric conditions, as part of a project to explore the viability of incorporating an engine platform which utilizes low temperature combustion regimes into a modern automotive application. The combustion system used high rates of EGR while maintaining combustion stability by using high charge motion intake port and a high energy ignition system. The engine ran highly dilute SI combustion at low loads, Diesel Assisted Spark Ignition at medium loads and a transition to Diesel Micro Pilot ignition at medium to high load. This paper explores diesel assisted spark ignited combustion at medium loads 6.5 bar to 12.7 bar BMEP.
Technical Paper

Multi-Dimensional Modeling and Validation of Combustion in a High-Efficiency Dual-Fuel Light-Duty Engine

2013-04-08
2013-01-1091
Using gasoline and diesel simultaneously in a dual-fuel combustion system has shown effective benefits in terms of both brake thermal efficiency and exhaust emissions. In this study, the dual-fuel approach is applied to a light-duty spark ignition (SI) gasoline direct injection (GDI) engine. Three combustion modes are proposed based on the engine load, diesel micro-pilot (DMP) combustion at high load, SI combustion at low load, and diesel assisted spark-ignition (DASI) combustion in the transition zone. Major focus is put on the DMP mode, where the diesel fuel acts as an enhancer for ignition and combustion of the mixture of gasoline, air, and recirculated exhaust gas. Computational fluid dynamics (CFD) is used to simulate the dual-fuel combustion with the final goal of supporting the comprehensive optimization of the main engine parameters.
Technical Paper

Evaluation of Ignition Timing Predictions Using Control-Oriented Models in Kinetically-Modulated Combustion Regimes

2012-04-16
2012-01-1136
Knock integrals and corresponding ignition delay (τ) correlations are often used in model-based control algorithms in order to predict ignition timing for kinetically modulated combustion regimes such as HCCI and PCCI. They can also be used to estimate knock-inception during conventional SI operation. The purpose of this study is to investigate the performance of various τ correlations proposed in the literature, including those developed based on fundamental data from shock tubes and rapid compression machines, those based on predictions from isochoric simulations using detailed chemical kinetic mechanisms, and those deduced from data of operating engines. A 0D engine simulation framework is used to compare the correlation performance where evaluations are based on the temperatures required at intake valve closure (TIVC) in order to achieve a fixed CA50 point over a range of conditions.
Technical Paper

Drive Cycle Analysis of Butanol/Diesel Blends in a Light-Duty Vehicle

2008-10-06
2008-01-2381
The potential exists to displace a portion of the petroleum diesel demand with butanol and positively impact engine-out particulate matter. As a preliminary investigation, 20% and 40% by volume blends of butanol with ultra low sulfur diesel fuel were operated in a 1999 Mercedes Benz C220 turbo diesel vehicle (Euro III compliant). Cold and hot start urban as well as highway drive cycle tests were performed for the two blends of butanol and compared to diesel fuel. In addition, 35 MPH and 55 MPH steady-state tests were conducted under varying road loads for the two fuel blends. Exhaust gas emissions, fuel consumption, and intake and exhaust temperatures were acquired for each test condition. Filter smoke numbers were also acquired during the steady-state tests. The results showed that for the urban drive cycle, both total hydrocarbon (THC) and carbon monoxide (CO) emissions increased as larger quantities of butanol were added to the diesel fuel.
Technical Paper

Interlaboratory Cross-Check of Heavy-Duty Vehicle Chassis Dynamometers

2002-10-21
2002-01-2879
Six laboratories capable of chassis-testing heavy-duty vehicles participated in a crosscheck program designed to compare emissions results from a Ford L-9000. The single-axle vehicle was shipped to each laboratory and tested through a series of UDDS and steady-state cycles. The resulting data were compared statistically using reproducibility and repeatability analyses. Although one lab produced some results that significantly differed from the other five, the remaining labs produced comparable results. TPM, CO and THC were the most variable while NOX and CO2 were most stable. Lab differences included atmospheric and environmental conditions, road-load curve application and drivers. Comparison of steady state and transient tests suggest that driver variability is not a major factor.
X