Refine Your Search

Topic

Search Results

Technical Paper

A Study of a Highly Boosted and Efficient Downsized Ethanol Direct Injection (EDI) Engine in Two Different Configurations for the Purpose of Replacing High-Displacement Gasoline Engines

2015-04-14
2015-01-1255
The paper presents a layout of a highly boosted Ethanol Direct Injected (EDI) engine with extreme downsizing, which represents a powerful means to reduce emissions at reduced production costs. The substitution of high-displacement engines (2.4- or 3.0-liter) by a downsized turbocharged EDI-engine is studied. The paper describes the detailed layout of all engine hardware and in particular, the cylinder head structure including the optimized intake and exhaust manifolds as well as implemented DI injectors. The paper continues with a presentation of the experimental data obtained at the engine test rig. The paper concludes presenting a series of experimental data obtained with the downsized engine mounted in a car as a replacement for its original high-displacement engine.
Technical Paper

Analysis of the Physical Boundary Conditions for the Layout of an Optimized Ethanol Low-Temperature Mixture Preparation Device

2009-04-20
2009-01-0618
The paper presents the basic scientific analytical approach to identify the main physical parameters, which enable an optimization of several layouts for an Ethanol Cold Start (ECS) device. The main optimization criteria for the system layout are a single mixture preparation system for both cold start and hot engine handling, a short energy release time, a short start time and a possible high-precision ethanol metering system capability after start. The paper describes 3 suggested solutions. Two of the solutions are prototyped and tested on several vehicles. The paper concludes with a series of experimental data obtained on different flex engines with the new ECS-system variants. The obtained test results show good pure ethanol cold start capability for temperatures above 263 K and an excellent system temperature control of the fuel in the fuel-rail and in the injectors, which prevents the occurrence of any cavitations phenomenon.
Technical Paper

Development of a Combustion Process for a High Performance 2-Stroke Engine with High Pressure Direct Injection

2004-10-25
2004-01-2942
The present paper describes in detail the development of such a combustion process, starting from the initial design, referring to the simulation of the entire system with the description of the injection, vaporisation and combustion, through to the test bench experiments. The particular focus of the presentation lies on the application of 3D-CFD simulation technologies for modelling the entire system, including the high-pressure direct injection. This paper looks into the analysis and validation of the simulation data, as well as into the thermodynamic analysis and evaluation of the data measured in the tests. The results regarding the performance, emissions and other parameters are represented in comparison with other combustion processes, thus showing the potential of the newly designed combustion process.
Technical Paper

Development of a New In-vehicle Sensing Method to Instantaneously Measure the Mixture Fraction of Bio-diesel Present in a Crude Oil based Classic Diesel Fuel

2013-04-08
2013-01-1745
The paper gives a short introduction to the notion of flex fuel approach for diesel engines. The paper continues with a description of a basic study of the diesel combustion process to allow the design of a strategy for recognition of a random bio-diesel fraction, Bx, by a purely software-based sensing technique, which creates an image of the temporal combustion behavior and uses only sensors already in service for current common rail mixture preparation systems. A description is made of two different approaches to software- based sensing techniques, one based on the presence of a crank angle speed sensor and the other on the presence of a lambda sensor in the exhaust system. The principles of the associated software flow diagrams embedded in the engine control unit are also explained. The paper concludes presenting a series of experimental verification data obtained on a large-scale series produced 1.3 liter turbo-charged common rail passenger car engine.
Technical Paper

Developments in the Use of Multi-Purpose Numerical Simulation Tools to Optimize Combustion Control Parameters for the 2nd Generation of Lean Burn Stratified GDI Engines

2001-03-05
2001-01-0967
The first part of the paper gives an overview of the current results obtained with the first-generation of GDI-powered vehicles launched on the European market. In view of the rather limited success in fuel consumption gain the second-generation of very lean stratified layouts has begun, but this process requires the development and application of new high-level analysis tools. A possible high performance approach is the multi-purpose use of 3-D numerical simulation both in the development and the engine control strategy calibration phases. The development of a small 1.6 liter lean stratified engine project was chosen to demonstrate the dual application capability of the NCF-3D simulation tool. The paper continues with a description of the engine application frame, the basic features of the NCF-3D simulation tool and the latest enhancements made to combustion and fuel composition models within the software frame.
Technical Paper

Direct Injection for Future SI-Engines - Stand Alone Combustion Layout or Integrated Part of Multi-Function Fuel/Air Management Approach?

2003-03-03
2003-01-0540
In the future generation of low consumption SI-engine layouts, it has become necessary to reduce costs as well as the complexity level and, increase the system reliability by the latter. To avoid driving the GDI-system in the critical, very lean stratified operation mode without losing the fuel consumption benefit, a solution is suggested, which combines a fully variable valve control system with a low level, robust GDI combustion layout. The first part of the present paper presents the latest development in the field of high precision multi-hole GDI injector spray nozzles. The basic aspects of mixture preparation with multi-hole gasoline atomizers are highlighted and their spray behavior compared to that of the current swirl atomizer nozzle. The second part of the paper presents primary optimization of a largely homogeneous GDI combustion layout combined with a fully variable valve timing control system including complete cylinder de-activation.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Enhancement of a Software-Based Sensing Approach, which Instantaneously Determines the Mixture Fraction of Bio-Diesel Present in a Crude Oil Based Classic Diesel Fuel by Use of an Alternative Set of Integral Key-Parameters

2014-04-01
2014-01-1348
The paper gives a short introduction to the bio-diesel mixture approach for diesel engines. The paper continues with a description of the design of a strategy for recognition of a random bio-diesel fraction, Bx, by a purely software-based sensing technique, which creates an image of the temporal combustion behavior and uses only sensors already in service for current common rail mixture preparation systems. A short description is made of a baseline approach of a sensing technique using a crank angle speed sensor. Hereafter the paper continues by the introduction of several integral or Upper Level (UL) key-parameters applied to enhance the precision of the Bx-detection or completely replace the original lower level combustion key-parameter set, which relates the instantaneous fraction of bio-diesel, Bx, to the engine torque. The paper concludes presenting a series of experimental verification data obtained on a large-scale series produced 1.3 liter Turbo CR-rail passenger car engine.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

1999-03-01
1999-01-0173
The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Experimental and Numerical Approach to Productionizing a GDI-2 Stroke Spark Ignited Small Displacement Engine Design

1999-09-28
1999-01-3290
The first part of the paper gives an overview of the environmental conditions with which a future two stroke powered vehicle must comply and explains the reasons for which a direct gasoline injection into the combustion chamber offers a potential solution. The paper continues with a description of the fuel/air mixture injection used in the F.A.S.T. concept and gives a detailed overview of the layout of the 125 cc engine to which it is applied. The structure of its electronic engine management system, mandatory for the necessary control precision, is presented. Hereafter is made a short introduction to the visualization and numerical computation tools used for the engine design optimization. The paper concludes with a detailed presentation and discussion of the experimental results obtained with the engine operated, either in steady state and transient conditions on an engine test rig, and mounted in a classic small dimension two-wheel vehicle submitted to road tests.
Technical Paper

Experimental and Numerical Study of Spray Generated by a High Pressure Gasoline Swirl Injector

2002-10-21
2002-01-2697
Experimental measurements and numerical computations were made to characterize a spray generated by a high-pressure swirl injector. The Phase Doppler technique was applied to get information on droplet sizes (d10) and axial velocities at defined distances from the injector tip. Global spray visualization was also made. Computations were carried out using a modified version of KIVA 3V. In particular, the break-up length of the sheet and its dimension were computed from a semi-empirical correlation related to the wave instability theory suggested by Dombrowski, including the modifications introduced by Han and Reitz. Two different approaches were used to describe the initial spray conditions. According to the first, discrete particles with a characteristic size equal to the thickness of the sheet are injected. The second approach assumes, that the particles having a SMD computed by a semi-empirical correlation are injected according to a statistical distribution.
Technical Paper

Minimization of Particulate Raw Emissions from CR-Diesel Engines - A Key-Element to Limit the Increase in Complexity of Exhaust Gas After-Treatment

2005-04-11
2005-01-1235
The present paper describes a study of the basic parameters, which govern particulate (soot) formation within the combustion chamber of a small displacement (1.3 liter) turbocharged European CR-diesel engine. The main tools used for the study are a real fired engine, a numerical virtual engine and a special high ambient pressure vessel for injector spray visualization. The paper describes an improved soot formation model implemented in the virtual engine setup. A comparison is presented between measured and computed combustion data at 8 different load points. The paper concludes with a discussion of the means, which can be used to minimize the particulate matter formation in the design phase of both the combustion layout and the fuel injector atomizer as well as in the design of the injection control strategies.
Journal Article

Most Recent Discussion of the Performance and Emissions Produced by a Stratified Torch Ignition Prototype Engine Fuelled by a Blend of Ethanol and Gasoline

2017-03-28
2017-01-0644
In a torch ignition engine system the combustion starts in a prechamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main combustion chamber. The paper presents the layout of the prototype engine and the developed fuel injection system. It continues with a detailed description of the performance of the torch ignition engine running on a gasoline/ethanol blend for different mixture stratification levels as well as engine speeds and loads. Also detailed analyses of specific fuel consumption, thermal and combustion efficiency, specific emissions of CO2 and the main combustion parameters are carried out. A supplementary decrease in NOX emissions was obtained by use of Brazilian pure hydrated fuel. The paper concludes presenting the main results obtained in this work, which show significant increase of the torch ignition engine performance in comparison with the commercial baseline engine.
Technical Paper

New Innovative Simulation Tool, the Virtual Spray Vessel (VSV), to Improve the Characterization and Spray Stability of Mass Produced Fuel Injectors

2011-04-12
2011-01-0380
The success obtained by use of Virtual Engine Modeling (VEM) in the design and development areas of fuel injectors generated a lot of interest from production and quality engineers to possess a similar tool related to spray vessel measurements. To respond to stringent PL6/EURO5 requirements it was decided to develop a Virtual Spray Vessel (VSV) tool capable of predicting spray patterns and perform droplet diameter analysis comparable to real-time Phase Doppler Analysis (PDA) results. The paper describes the analogies between VEM and VSV modeling and the specific new numerical approaches to obtain spatial spray data comparable to conventional mechanical measurement techniques and to perform droplet diameter analysis comparable to PDA data. The paper concludes with a series of comparisons of simulated and experimental data from virtual and real-time measurement vessels.
Technical Paper

Optimization by CFD Simulation of Spray Formation Parameters to Adapt Direct Injection High-Pressure Fuel Injectors to High-Speed SI-Engines

2004-03-08
2004-01-0539
The main objective of the paper is to describe the optimization work performed to adjust direct injection (DI)-technology to SI-engines running at high (8000 to 10000 rpm.) and extremely high speeds (more than 18000 rpm). In the first category are located a certain number of small and middle displacement two-stroke series produced engines. In the second category are the typical high power racing engines used for competitions like the formula 1. The first part of the paper describes the particular requirements that an in-cylinder fuelling and mixture preparation will have to fulfill with the extremely short period available for introduction and vaporization of the fuel. The paper continues with a description of the different spray shapes, spray penetration velocities and atomization capabilities, which are optimal for the different combustion chamber architectures.
Technical Paper

Parametric Study of Physical Requirements for Optimization of the EGR-rate and the Spray Formation for Minimum Emissions Production Over a Broad Range of Load/Speed Conditions

2006-04-03
2006-01-1120
The present paper describes a study, which can enable a small displacement (1.3 liter) turbocharged European CR-diesel engine to tolerate an important increase in EGR-level. The analysis is performed by use of a 3D virtual numerical engine model, which isolates the main parameters that must be optimized within the perimeter of the combustion chamber. The paper gives a short introduction to the physical background for NOx and soot-formation as well as a recall of the main issues related to the simulation models used in the virtual engine simulation. The analysis is performed in a 9 points load/speed test matrix. Several EGR-rates are studied as well as the impact of a precise temperature control of the exhaust gas re-introduced in the intake manifold. The paper concludes by an analysis of the cumulated impact on the EGR-level tolerated by the engine after the introduction of the suggested optimization measures.
Technical Paper

Parametric Study of Physical Requirements for Successful Use of a Homogenous Charge Compression Ignition (HCCI) Approach in a Direct Injected Gasoline Engine

2006-04-03
2006-01-0632
The present paper is a contribution in which is used a numerical simulation approach, the Virtual Engine Model, to study the combination of the Compression Ignition process with a Gasoline Direct Injection mixture preparation in a limited number of load-points. The first part of the paper describes the reasons for which current Gasoline Direct Injection engine technology must be combined with other technologies related to the in-cylinder mixture preparation control to further increase their potential for decreased fuel consumption. The paper continues with a description of the physics of spark and compression ignited processes as well as of the involved mixture preparation hardware components. The setup and the practical use of the Virtual Engine Model are discussed for both spark and compression ignited approaches.
Technical Paper

Presentation of the Performance and Emissions of a Stratified Torch Ignition Prototype Engine Fuelled by a Blend of Ethanol and Gasoline

2016-04-05
2016-01-0534
In a torch ignition engine system the combustion starts in a prechamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main combustion chamber. The paper presents the layout of the prototype engine and the developed fuel injection system. It continues with a detailed description of the performance of the torch ignition engine running on a gasoline/ethanol blend for different mixture stratification levels as well as engine speeds and loads. Also detailed analyses of specific fuel consumption, thermal and combustion efficiency, specific emissions of CO2 and the main combustion parameters are carried out. A supplementary decrease in NOX emissions was obtained by use of Brazilian pure hydrated fuel. The paper concludes presenting the main results obtained in this work, which show significant increase of the torch ignition engine performance in comparison with the commercial baseline engine.
Technical Paper

Presentation of the Performance and Emissions of a Stratified Torch Ignition Prototype Engine Fuelled by a Blend of Ethanol and Gasoline

2016-04-05
2016-01-0665
In a torch ignition engine system the combustion starts in a prechamber, where the pressure increase pushes the combustion jet flames through calibrated nozzles to be precisely targeted into the main combustion chamber. The paper presents the layout of the prototype engine and the developed fuel injection system. It continues with a detailed description of the performance of the torch ignition engine running on a gasoline/ethanol blend for different mixture stratification levels as well as engine speeds and loads. Also detailed analyses of specific fuel consumption, thermal and combustion efficiency, specific emissions of CO2 and the main combustion parameters are carried out. A supplementary decrease in NOX emissions was obtained by use of Brazilian pure hydrated fuel. The paper concludes presenting the main results obtained in this work, which show significant increase of the torch ignition engine performance in comparison with the commercial baseline engine.
Technical Paper

Reduction of Spray Momentum for GDI High-Pressure Injectors - A Necessary Step to Accomplish Series Production of Super-Charged DI-Engines

2005-04-11
2005-01-0104
The first part of the present paper describes the means by which the spray momentum can be decreased. The objective can be obtained either by injector-internal geometrical design changes, which very often lead to a highly non-uniform spray density/droplet distribution or by a new injector-external process, called the colliding jet (CJ) approach. The paper continues with a detailed description of the physics of the controlled secondary breakup process provided by the CJ-approach, which enables a very uniform density/droplet distribution on the downstream side of the collision zone as well as an approximately 40 % decrease in spray penetration depth. The knowledge of the physics of the CJ-approach enables the introduction of a new spray model in the 3-D numerical simulation code NCF-3D.
X