Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Journal Article

Deposit Control in Modern Diesel Fuel Injection Systems

2010-10-25
2010-01-2250
Modern diesel Fuel Injection Equipment (FIE) systems are susceptible to the formation of a variety of deposits. These can occur in different locations, e.g. in nozzle spray-holes and inside the injector body. The problems associated with deposits are increasing and are seen in both Passenger Car (PC) and Heavy Duty (HD) vehicles. Mechanisms responsible for the formation of these deposits are not limited to one particular type. This paper reviews FIE deposits developed in modern PC and HD engines using a variety of bench engine testing and field trials. Euro 4/ IV and Euro 5/V engines were selected for this programme. The fuels used ranged from fossil only to distillate fuels containing up to 10% Fatty Acid Methyl Ester (FAME) and then treated with additives to overcome the formation of FIE deposits.
Journal Article

Diesel Lubricity Requirements of Future Fuel Injection Equipment

2009-04-20
2009-01-0848
This paper looks at the underlying fundamentals of diesel fuel system lubrication for the highly-loaded contacts found in fuel injection equipment like high-pressure pumps. These types of contacts are already occurring in modern systems and their severity is likely to increase in future applications due to the requirement for increased fuel pressure. The aim of the work was to characterise the tribological behavior of these contacts when lubricated with diesel fuel and diesel fuel treated with lubricity additives and model nitrogen and sulphur compounds of different chemical composition. It is essential to understand the role of diesel fuel and of lubricity additives to ensure that future, more severely-loaded systems, will be free of any wear problem in the field.
Technical Paper

Investigation into the Formation and Prevention of Internal Diesel Injector Deposits

2008-04-14
2008-01-0926
1 High precision high pressure diesel common rail fuel injection systems play a key role in emission control, fuel consumption and driving performance. Deposits have been observed on internal injector components, for example in the armature assembly, in the slots of the piston and on the nozzle needle. The brownish to colourless deposits can adversely impact driveability and result in non-compliance with the Euro 4 or Euro 5 emission limits. The deposits have been extensively studied to understand their composition and their formation mechanism. Due to the location of these deposits, the influence of combustion gas can be completely ruled out. In fact, their formation can be explained by interactions of certain diesel fuel additives, including di- and mono-fatty acids. This paper describes the methodology used and the data generated that support the proposed mechanisms. Moreover, approaches to avoid such interactions are discussed.
Technical Paper

A Further Application of Loop Shaping H-infinity Control to Diesel Engine Control - Driven-Idle Speed Control

2002-03-04
2002-01-0197
This paper describes the application of robust H-infinity loop-shaping control to diesel engine speed control for the driven idle condition. The method was introduced in a previous paper1 and applied to an anti-oscillation strategy. For this paper, a one-degree-of-freedom controller structure (feedback only) was examined and applied to a small passenger car. Through careful implementation, the control algorithm was made to be low order and efficient, requiring only limited microprocessor resources. The robust controller design was evaluated through simulation and vehicle testing, and the performance was compared with an up-to-date tuned PI controller. The success of the robust controller was demonstrated in vehicle testing for the most challenging 3rd gear condition. The design was found to have superior performance and was eminently suitable for production.
Technical Paper

Application of Loop Shaping H-infinity Control to Diesel Engine Anti-Oscillation Strategy

2001-10-01
2001-01-3316
The control of fuel delivery to minimize drivetrain oscillations is a major benefit to vehicle refinement and driveability. This paper describes the application of robust H-infinity loop-shaping control to the speed-fuel control loop. A one-degree-of-freedom controller structure (feedback only) is examined and applied to a small passenger car. Using careful implementation, the control algorithm is of low order and efficient requiring only limited microprocessor resources. The robust controller gives excellent performance when operated synchronously to engine rotation, where the dynamics become speed-dependent. Alternatively it can be operated satisfactorily at a fixed sample rate, asynchronous to engine rotation. The design is found to be eminently suitable for production.
Technical Paper

Diesel Fuel Injection Control for Optimum Driveability

2000-03-06
2000-01-0265
Performance and refinement are key factors which influence the market acceptance of passenger cars, and consequently in the area of diesel fuel injection control there is increasing pressure for improved driveability. “Driveline shunt” is one important and problematic aspect of driveability, which is also known as “judder”, “chuggle” or “cab-nod”. It has been defined as an objectionable vehicle oscillation which takes place following a rapid throttle input or increase in engine load. This phenomenon is caused by driveline vibrations which can occur as a consequence of variations in engine torque demand. Mathematical modelling and experimentation techniques have been used to establish the behaviour of a fuel injection system, engine and vehicle driveline. Vehicle tests have been conducted in order to relate objective metrics and subjective opinion.
X