Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Performance of DSRC during Safety Pilot Model Deployment

2017-03-28
2017-01-0077
This paper provides an analysis of how communication performance between vehicles using Dedicated Short-range Communication (DSRC) devices varies by antenna mounting, vehicle relative positions and orientations, and between receiving devices. DSRC is a wireless technology developed especially for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communications. A frequency band near 5.9 GHz has been set aside in the US and other countries for exploring safety and other uses for road vehicles. DSRC devices installed onboard vehicles broadcast their location using global navigation space systems (GNSS), speed, heading, and other information. This can be used to study communication performance in many scenarios including: car-following situations, rear-end crash avoidance, oncoming traffic situations, left turn advisory, head-on crash avoidance and do-not-pass warnings.
Technical Paper

Automated Control and Brake Strategies for Future Crash Avoidance Systems - Potential Benefits

2013-09-24
2013-01-2391
This paper explores the potential safety performance of “Future Generation” automated speed control crash avoidance systems for Commercial Vehicles. The technologies discussed in this paper include Adaptive Cruise Control (ACC), second and third generation Forward Collision Avoidance and Mitigation Systems (F-CAM) comprised of Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The research [1[ discussed in this paper is from a study conducted by UMTRI which estimated the safety benefits of current and future F-CAM systems and the comparative efficacy of adaptive cruise control. The future generation systems which are the focus of this paper were evaluated at two separate levels of product refinement, “second generation” and “third generation” systems.
Technical Paper

Effectiveness of a Current Commercial Vehicle Forward Collision Avoidance and Mitigation Systems

2013-09-24
2013-01-2394
This paper focuses on the safety performance of Commercial Vehicle Forward Collision Avoidance and Mitigation Systems (F-CAM) that include Forward Collision Warning (FCW) with Collision Mitigation Braking (CMB) technology as applied to heavy trucks, including single unit and tractor semitrailers. The study estimated the safety benefits of a commercially available F-CAM system considered to be representative of products currently in service. The functional characteristics were evaluated and its performance generically modeled to estimate safety benefits. This was accomplished through the following steps: (1) first characterize the actual performance of these systems in various pre-crash scenarios under controlled test track conditions, and then reverse engineering the algorithms that control warnings and automatic braking actions; (2) developing a comprehensive set of simulated crash events representative of actual truck striking rear-end crashes.
Technical Paper

Field Operational Tests - Evaluating Driver-Assistance Systems Under Real World Conditions

2006-10-16
2006-21-0049
This paper reviews the field operational test (FOT) methodology adopted in recent years for the evaluation of driver-assistance systems. The Road Departure Crash Warning System program is used both for illustration and as a case study. This project involved an extensive field operational test of a driver-assistance system using volunteers from the general public who drove instrumented research vehicles in place of their normal cars. Objective and subjective data were collected in these trials, and comparisons were made between driving behavior under conditions where the systems were either enabled or disabled. This paper presents sample results from the analyses and draws conclusions on the strengths and weaknesses of the FOT method.
X