Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

Low Temperature Performance of a Magnetorheological Fluid Fan Drive

2010-04-12
2010-01-0324
Magnetorheological fluid (MRF) fan drives have been considered for truck cooling applications due to their excellent controllability, reduced noise, improved fuel economy, and improved diagnostic capability. However, there are several concerns related to their cold weather operation: drag torque may be high, the MR fluid may slump creating a dynamic imbalance and features designed for low temperature operation must work at high temperature. The impact of MR fluid composition and rotor surface finish on these concerns was evaluated by testing several MRF fan drive and fluid combinations in a cold cell. The best rotor/fluid combinations were then subjected to durability tests and validated at high temperature.
Technical Paper

Modeling and Drivability Assessment of a Single-Motor Strong Hybrid at Engine Start

2010-05-05
2010-01-1440
Using a clutch to disconnect and shut-off the engine when engine power is not required, the single-motor strong hybrid has the potential for significant fuel economy improvement with reduced costs and less system complexity. However, it is a challenge for the single-motor strong hybrid to maintain acceptable drivability at engine start since it requires diverting motor torque through a slipping clutch to start the engine. In this study, dynamic simulations of the hybrid transmission driveline with hydraulic and motor controls have been employed to assess the feasibility of the single-motor strong hybrid, to address drivability issues specific to this hybrid architecture at engine start, and to develop control methods to manage driveline disturbances to an acceptable level.
Technical Paper

Electromechanical Clutch Actuator: Design, Analysis and Experiments

2013-10-14
2013-01-2496
With the aim of producing innovative clutch actuation mechanisms for automotive transmissions, we are investigating a design based on power screws. The design strives to improve clutch actuation technology and minimize energy consumption by maintaining clutch lock-up independent of an external energy source. The system consists of a lead screw shaft-and-nut assembly, a clutch apply-plate, a set of wet clutch disks and a brushless DC motor. The clutch actuation assembly is separated from the clutch-pack via thrust bearings, which allows the use of a motor, while reducing the inertial load imposed by the conventional clutch-pack. A prototype of the design was fabricated and installed on a testbed, to mimic the installation of the actuator to replace the hydraulic components. A standard 12-disk clutch-pack of an automatic transmission was used within the apparatus. The formulation of the mathematical model of the entire testbed is described in this paper.
Technical Paper

Fuel Economy and Performance Potential of a Five-Speed 4T60-E Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0246
A wet multi-plate clutch, designated as the “starting clutch”, and a two-speed simple planetary gearset are used to replace the torque converter in the 4T60-E automatic transmission in order to study the potential improvement of vehicle fuel economy without sacrificing 0 - 60 mph acceleration performance. The starting clutch and the two-speed simple planetary gearset are designed to fit in the torque converter compartment. This paper describes the modified five-speed 4T60-E starting clutch automatic transmission system and provides vehicle test results to demonstrate its fuel economy and 0-60 mph performance potential.
Technical Paper

A Five-Speed Starting Clutch Automatic Transmission Vehicle

2003-03-03
2003-01-0248
A wet multi-plate clutch, designated as the “starting clutch”, is used to replace the torque converter in the automatic transmission in order to improve vehicle fuel economy. The transmission ratio spread must be increased to compensate for the torque multiplication of the torque converter and avoid penalizing the 0-60 mph acceleration performance. The main challenge of this concept is the control of the starting clutch to ensure acceptable vehicle drivability. This paper describes the system of a five-speed starting clutch automatic transmission vehicle and shows vehicle test results. Vehicle test data show that (i) the fuel economy benefit of the starting clutch is significant, and (ii) a starting clutch transmission can be designed to equal or better the 0-60 mph acceleration performance of a torque converter transmission by proper selection of the gear ratios.
Journal Article

Development of Two-Mode Hybrid Powertrain with Enhanced EV Capability

2011-04-12
2011-01-0883
The two-mode hybrid system has several advantages over a one-mode EVT system: greater ability to transmit power mechanically and minimize electrical recirculation power, maximize fuel economy improvement and best meet demanding vehicle requirements. Extending the two-mode hybrid electric vehicle (HEV) to two-mode plug-in hybrid electric vehicle (PHEV) is significant not only to make the internal combustion engine (ICE)-based vehicle cleaner and more efficient in the near term, but also to provide a potential path to battery electric vehicles in the future. For PHEV, the enhanced electric drive capability is of vital importance to achieve best efficiency and best electric only performance. This paper describes the development of a prototype two-mode hybrid powertrain with enhanced EV capability (2MH4EV). The prototype drive unit includes an additional input brake to the existing General Motors FWD 2-mode HEV system.
Technical Paper

Controls Development for Clutch-Assisted Engine Starts in a Parallel Hybrid Electric Vehicle

2011-04-12
2011-01-0870
In a parallel hybrid electric vehicle, higher fuel economy gains are typically achieved if significant electric drive (or engine-off) operation is possible, shifting the engine operating schedule so that it only runs at medium to high load for best efficiency. To enable efficient engine-off driving, a typical configuration will have a disconnect clutch between the engine and the rest of the driveline. In some configurations, when engine-on operation is requested the disconnect clutch is applied in conjunction with the traction motor/generator to crank the engine (i.e., a flying engine start). In this paper we describe the development of a control system for a flying engine start using an engine disconnect clutch. The clutch is located between the engine and electric motor, which is connected to the input of a multispeed transmission. We first describe an initial control algorithm evaluation using a driveline model.
X