Refine Your Search

Topic

Search Results

Author:
Technical Paper

A Compact Dual CAM Variable Valve Operation System to Improve Volumetric Efficiency of Small Engines

2012-04-16
2012-01-0161
Setting the correct valve timing and lift based on the operating speed will be the key to achieving good volumetric efficiency and torque. Continuously variable valve timing systems are the best choice but are too expensive. In this work a novel two stage variable valve actuation system was conceived and developed for a small single cylinder three wheeler spark ignition engine. The constraints were space, cost and complexity. The developed system uses one cam for low speeds and another cam that has a higher lift and duration for high speeds. The shift between the cams occurs through the mechanism even as the engine runs by the operation of a stepper motor which can be connected to the engine controller. A one dimensional simulation model validated with experimental data was used to predict the suitable valve timings and lifts in low and high speed ranges. Two profiles were then selected.
Technical Paper

A Comparison of Different Warm-up Technologies on Transient Emission Characteristics of a Low-Compression Ratio Light-duty Diesel Engine

2022-03-29
2022-01-0482
It is well established that reducing the compression ratio (CR) of a diesel engine leads to a significant increase in hydrocarbon (HC) and carbon monoxide (CO) emissions, especially in cold and transient conditions. Hence, it is essential to find new strategies to reduce the HC and CO emissions of a low compression ratio (LCR) diesel engine in transient conditions. In the present work, a detailed evaluation of different warm-up technologies was conducted for their effects on transient emissions characteristics of a single-cylinder naturally aspirated LCR diesel engine. For this purpose, the engine was coupled to an instrumented transient engine dynamometer setup. A transient cycle of 160 seconds with starting, idling, speed ramp-up and load ramp-up was defined, and the engine was run in automatic mode by the dynamometer. The experiments were conducted by overnight soaking the engine at a specified temperature of 25 deg.C.
Technical Paper

A Computational Study on the Effect of Injector Location on the Performance of a Small Spark-Ignition Engine Modified to Operate under the Direct-Injection Mode

2020-04-14
2020-01-0286
In a direct-injection (DI) engine, charge motion and mixture preparation are among the most important factors deciding the performance and emissions. This work was focused on studying the effect of injector positioning on fuel-air mixture preparation and fuel impingement on in-cylinder surfaces during the homogeneous mode of operation in a naturally aspirated, small bore, 0.2 l, light-duty, air-cooled, four-stroke, spark-ignition engine modified to operate under the DI mode. A commercially available, six-hole, solenoid-operated injector was used. Two injector locations were identified based on the availability of the space on the cylinder head. One location yielded the spray-guided (SG) configuration, with one of the spray plumes targeted towards the spark plug. In the second location, the spray plumes were targeted towards the piston top in a wall-guided (WG) configuration so as to minimize the impingement of fuel on the liner.
Technical Paper

A Holistic Approach to Develop a Common Rail Single Cylinder Diesel Engine for Bharat Stage VI Emission Legislation

2020-04-14
2020-01-1357
The upcoming Bharat Stage VI (BS VI) emission legislation has put enormous pressure on the future of small diesel engines which are widely used in the Indian market. The present work investigates the emission reduction potential of a common rail direct injection single cylinder diesel engine by adopting a holistic approach of lowering the compression ratio, boosting the intake air and down-speeding the engine. Experimental investigations were conducted across the entire operating map of a mass-production, light-duty diesel engine to examine the benefits of the proposed approach and the results are quantified for the modified Indian drive cycle (MIDC). By reducing the compression ratio from 18:1 to 14:1, the oxides of nitrogen (NOx) and soot emissions are reduced by 40% and 75% respectively. However, a significant penalty in fuel economy, unburned hydrocarbon (HC) and carbon monoxide (CO) emissions are observed with the reduced compression ratio.
Technical Paper

Air Assisted Direct Cylinder Barrel Injection of Gasoline in a Two-Stroke S.I. Engine

2013-04-08
2013-01-0583
This experimental study was aimed at improving a two-stroke S.I engine by injecting gasoline with air assistance through the cylinder barrel. Experimentally obtained performance and emission parameters of the engine at 25% and 100% throttle positions were analyzed at 3000 rpm. The timing of air assisted injection was optimized at 25% throttle and 3000 rpm. The performance and emissions of the engine were compared with those obtained with an optimized manifold injection system. In all cases the best spark timing was used. At 25% throttle although the thermal efficiency was increased only slightly, there was a significant reduction in HC emissions to 6.63 g/kW-h with cylinder barrel injection from 10.69 g/kW-h with manifold injection due to reduced short circuiting of the fuel. There was a reduction in NO emissions as well with cylinder barrel injection. Comparisons were made at the point of highest thermal efficiency at 100% throttle also.
Technical Paper

An Approach for Estimation of Ignition Delay in a Dual Fuel Engine

1999-03-01
1999-01-0232
The ignition delay of the pilot fuel in a dual fuel engine is different from that in a diesel engine because the primary fuel alters the properties of the charge, reduces the oxygen available and undergoes pre-ignition reactions during compression. In the present work, a correlation for the ignition delay in a biogas-diesel dual fuel engine has been proposed on the basis of experimental results. This correlation can be used if relevant parameters corresponding to diesel mode of operation and the properties of the gaseous fuel along with its concentration in the intake charge are known. The Hardenberg & Hase correlation for ignition delay in diesel engines has been modified for the dual fuel situation by bringing in to effect the changes in the temperature at the end of compression and oxygen concentration in the charge. The proposed correlation shows reasonable agreement with experimental results for a biogas-diesel dual fuel engine.
Technical Paper

An Experimental Study of Knock in a Natural Gas Fuelled Spark Ignition Engine

2001-09-24
2001-01-3562
Experiments were conducted on a single cylinder SI engine fuelled by natural gas. Equivalence ratios varying from 0.7 to 1.0 were used and the spark timing was changed from no knock to high knock conditions. Pressure crank angle data from 160 consecutive cycles was analysed. It was found that coefficient of variation of peak pressure (COVPP) and standard deviation of the angle of occurrence of peak pressure (SDAPP) can be used to set the engine for knock free operation. These parameters show a sudden rise from a minimum value that they attain near a spark timing where knock sets in. When the average knock intensity is low, there are two groups of cycles. The first comprises of non-knocking to slightly knocking ones. The other contains cycles with relatively high knock intensity. The sudden emergence of two groups is responsible for the observed trends of SDAPP. At high overall knock intensities the first group is absent.
Technical Paper

Boost Port Injection of LPG in a Two - Stroke SI Engine for Reduction in HC Emissions

2013-04-08
2013-01-0584
Short-circuiting of the fuel air mixture during scavenging is the main reason for high fuel consumption and hydrocarbon (HC) emissions in two-stroke SI engines. Though direct injection of the fuel after the closure of ports has advantages, it is costly and complex. In this work, in a 2S-SI, single cylinder, automotive engine, LPG (liquefied Petroleum Gas) was injected through the boost port to reduce short-circuiting losses. A fuel injector was located on one of the boost ports and the air alone was fed through the other transfer and boost ports for scavenging. Experiments were done at 25% and 70% throttle openings with different injection timings and optimal spark timing at 3000 rpm. Boost port injection (BPI) of LPG reduced HC emissions at all conditions as compared to LPG-MI (Manifold Injection). Particularly significant reductions were seen at high throttle conditions and rich mixtures. HC reductions with BPI were 19% and 25% as compared to LPG-MI and gasoline-MI respectively.
Technical Paper

Calibration and Parametric Investigations on Lean NOx Trap and Particulate Filter Models for a Light Duty Diesel Engine

2020-04-14
2020-01-0657
To comply with the stringent future emission mandates of light-duty diesel engines, it is essential to deploy a suitable combination of emission control devices like diesel oxidation catalyst (DOC), diesel particulate filter (DPF) and DeNOx converter (LNT or SCR). Arriving at optimum size and layout of these emission control devices for a particular engine through experiments is both time and cost-intensive. Thus, it becomes important to develop suitable well-tuned simulation models that can be helpful to optimize individual emission control devices as well as arrive at an optimal layout for achieving higher conversion efficiency at a minimal cost. Towards this objective, the present work intends to develop a one-dimensional Exhaust After Treatment Devices (EATD) model using a commercial code. The model parameters are fine-tuned based on experimental data. The EATD model is then validated with experiment data that are not used for tuning the model.
Journal Article

Development of a Cam Phaser System to Improve the Performance of a Small Engine

2014-11-11
2014-32-0110
In this work, a new mechanical cam phaser (MCP) system is developed. This MCP system is simple, reliable, and cost-effective, and also offers good control. Phasing of either intake, exhaust or both intake and exhaust cam can be achieved with this system. A prototype of the mechanical cam phaser has been tested on a motored rig to validate its dynamic characteristics. The system was tested onto a small two wheeler engine and this paper describes the newly developed MCP mechanism and its effects on the performance of a small two wheeler engine.
Technical Paper

Development of a Variable Valve Timing System for Improving the Performance of a Small Two Wheeler Engine

2006-11-13
2006-32-0104
A novel, fully mechanical, simple, compact and cost effective variable valve timing system for two-wheeler application was developed. The details of the system and the performance are discussed. The system uses flyweights to exert a force on a cam, which floats on a shaft against a spring. The movement of the cam is axial and rotational due helical groves on the shaft. The system could start retarding the cam phasing after a predetermined speed. The system when implemented on a small scooter engine of 125 cc resulted in an increase in the volumetric efficiency at low speeds by 8%. The torque was improved by 10%. There was a reduction in the fuel consumption due to reduced throttling losses and leaner mixtures. When the system was implemented on a two-wheeler and tested on a chassis dynamometer on the Indian Driving Cycle a reduction in fuel consumption of 5% was noted. The emissions were also within limits.
Technical Paper

Effect of Fuel Injection Timing on the Mixture Preparation in a Small Gasoline Direct-Injection Engine

2018-10-30
2018-32-0014
Gasoline direct-injection (GDI) engines have evolved as a solution to meet the current demands of the automotive industry. Benefits of a GDI engine include good fuel economy, good transient response, and low cold start emissions. However, they suffer from problems, like combustion instability, misfire, and impingement of fuel on in-cylinder surfaces. Therefore, to highlight the influence of fuel injection timing on in-cylinder flow, turbulence, mixture distribution and wall impingement, a computational study is conducted on a small-bore GDI engine. Results showed that air motion inside the engine cylinder is influenced by direct-injection of fuel, with considerable variation in turbulent kinetic energy at the time of injection. Due to charge cooling effect, mixture density and trapped mass were increased by about 10.8% and 9.5%, respectively.
Technical Paper

Effect of Intensified Swirl and Squish on the Performance of a Lean Burn Engine Operated on LPG

2000-06-19
2000-01-1951
Experiments were conducted to assess the relative effects of swirl (by using a masked intake valve and by providing swirl grooves on the piston crown) and squish on the performance, emission and combustion characteristics of a lean burn engine operating on liquefied petroleum gas (LPG) at a compression ratio of 10.5 under 20% and 100% throttle opening conditions. The swirl produced by the masked intake valve configuration at 100% throttle opening resulted in improved thermal efficiency and reduced HC emission, cyclic variations, ignition delay & combustion duration as compared to swirl groove piston and enhanced squish piston. The lean misfire limit was extended and there was no increase in the NO level at any given power output. At 20% throttle with high squish, under lean mixture conditions, combustion is even better than the masked valve configuration.
Technical Paper

Effect of Split Injection on Combustion and Performance of a Biogas-Diesel Fuelled PPCCI Engine

2015-09-06
2015-24-2453
In this experimental work the effect of double injection of diesel in a biogas-diesel partially premixed charge compression ignition (BDPPCCI) engine was studied. Biogas was inducted along with air while diesel was injected through a common rail system using an open electronic control unit. Experiments were done at a fixed brake mean effective pressure of 2 bar and an intake charge temperature of 40°C. The effect of start of injection (SOI) of first and second injection pulses and also the biogas energy share (BGES) were evaluated. Experiments were also done in the BDPPCCI mode with diesel being injected in a single pulse and in the biogas-diesel dual fuel (BDDF) mode for comparison. The thermal efficiency in the BDPPCCI mode was better with double injection of diesel as compared to single pulse injection due to better combustion phasing. Improved charge homogeneity and reduced wall wetting of diesel lowered the smoke emission levels with split injection.
Technical Paper

Evaluation of Low-Pressure EGR System on NOx Reduction Potential of a Supercharged LCR Single-Cylinder Diesel Engine

2022-03-29
2022-01-0447
Supercharging a single-cylinder diesel engine has proved to be a viable methodology to reduce engine-out emissions and increase full-load torque and power. The increased air availability of the supercharger (SC) system helps to inject more fuel quantity that can improve the engine's full-load brake mean effective pressure (BMEP) without elevating soot emissions. However, the increased inlet temperature of the boosted air and the availability of excess oxygen can pose significant challenges to contain oxides of nitrogen (NOx) emissions. Hence, it is important to investigate the potential NOx reduction options in supercharged diesel engines. In the present work, the potential of low-pressure exhaust gas recirculation (LP EGR) was evaluated in a single-cylinder supercharged diesel engine for its benefits in NOx emission reduction and impact on other criteria emissions and brake specific fuel consumption (BSFC).
Technical Paper

Experimental Investigation of Multiple Injection Strategies on Combustion Stability, Performance and Emissions in a Methanol-Diesel Dual Fuel Non-Road Engine

2020-04-14
2020-01-0308
In this work methanol was port injected while diesel was injected using a common rail system in a single cylinder non-road CI engine. Experiments were conducted with single (SPI) and double (DPI - pilot and main) injection of the directly injected diesel at 75% load and at a constant speed of 1500 rpm. The effects of methanol to diesel energy share (MDES) and injection scheduling on combustion stability, efficiency and emissions were evaluated. Initially, in the SPI mode, the methanol to diesel Energy Share (MDES) was varied, while the injection timing of diesel was always fixed for best brake thermal efficiency (BTE). Increase in the MDES resulted in a reduction in NOx and smoke emissions because of the high latent heat of vaporization of methanol and the oxygen available. Enhanced premixed combustion led to a raise in brake thermal efficiency (BTE). Coefficient of variation of IMEP, peak pressure and BTE were deteriorated which limited the usable MDES to 43%.
Technical Paper

Experimental Investigation of the Factors Affecting the Performance of a LPG - Diesel Dual Fuel Engine

1999-03-01
1999-01-1123
In a dual fuel engine a primary fuel that is generally gaseous is mixed with air, compressed and ignited by a small pilot spray of diesel as in a diesel engine. Dual fuel engines suffer from the problems of poor brake thermal efficiency and high HC emissions, particularly at low outputs. In the present experimental work, the effects of intake charge temperature, pilot fuel quantity, exhaust gas recirculation and throttling of the intake on improving the performance of a LPG-diesel dual fuel engine have been studied. Results indicate that at low outputs an increase in the intake temperature and pilot quantity is advantageous. HC level generally reduces with increase in pilot quantity and intake temperature. Exhaust gas recirculation (EGR) coupled with intake heating raises the brake thermal efficiency and lowers HC emissions. With throttling and EGR there is a significant reduction in the HC levels and an improvement in brake thermal efficiency at low loads.
Technical Paper

Experimental Investigation on the Use of Water Diesel Emulsion with Oxygen Enriched Air in a DI Diesel Engine

2001-03-05
2001-01-0205
A single cylinder, direct injection diesel engine was run on water diesel emulsion at a constant speed of 1500 rpm under variable load conditions. Water to diesel ratio of 0.4 on the mass basis was used. Tests indicated a considerable reduction in smoke and NO levels. This was accompanied by an increase in brake thermal efficiency at high outputs. HC & CO levels, ignition delay and rate of pressure rise went up. The heat release rate in the premixed burn period was higher. When the oxygen concentration in the intake air was enhanced in steps up to 25% along with the use of water diesel emulsion, the brake thermal efficiency was improved and there was a further reduction in the smoke level. HC and CO levels also dropped. NO emission went up due to increased temperature and oxygen availability. An oxygen concentration of 24% by volume was optimal as the NO levels were near about base diesel values.
Technical Paper

Experimental Investigations of Different Parameters Affecting the Performance of a CNG - Diesel Dual Fuel Engine

2005-10-24
2005-01-3767
In a dual fuel engine a primary fuel that is generally a gas is mixed with air, compressed and ignited by a small pilot- spray of diesel as in a diesel engine. Dual fuel engines generally suffer from the problem of lower brake power and lower peak engine cylinder pressure due to lower volumetric efficiency, although an improvement in brake specific energy consumption is observed compared to pure diesel mode. Results indicate that with an increase in percentage of CNG substitution the brake power decreases. The exhaust gas temperature and peak cylinder pressure also decrease. The rate of pressure rise is higher at lower engine speeds (1100, 1400 rev/min), although at 1700 and 2000 rev/min it is lower. The delay period throughout the engine speed shows an increasing trend. The coefficient of variation is also higher throughout the engine speeds and shows an increasing trend. The brake specific energy consumption is lower at 1100, 1400 and 1700 rev/min and at 2000 rev/min it is higher.
Technical Paper

Experimental Investigations on a Jatropha Oil Methanol Dual Fuel Engine

2001-03-05
2001-01-0153
Use of vegetable oils in diesel engines results in increased smoke and reduced brake thermal efficiency. Dual fuel engines can use a wide range of fuels and yet operate with low smoke emissions and high thermal efficiency. In this work, a single cylinder diesel engine was converted to use vegetable oil (Jatropha oil) as the pilot fuel and methanol as the inducted primary fuel. Tests were conducted at 1500 rev/min and full load. Different quantities of methanol and Jatropha oil were used. Results of experiments with diesel as the pilot fuel and methanol as the primary fuel were used for comparison. Brake thermal efficiency increased in the dual fuel mode when both Jatropha oil and diesel were used as pilot fuels. The maximum brake thermal efficiency was 30.6% with Jatropha oil and 32.8% with diesel. Smoke was drastically reduced from 4.4 BSU with pure Jatropha oil operation to 1.6 BSU in the dual fuel mode.
X