Refine Your Search

Topic

Search Results

Journal Article

Active Injection Control for Enabling Clean Combustion in Ethanol-Diesel Dual-Fuel Mode

2015-04-14
2015-01-0858
In this work, an active injection control strategy is developed for enabling clean and efficient combustion on an ethanol-diesel dual-fuel engine. The essence of this active injection control is the minimization of the diffusion burning and resultant emissions associated with the diesel injection while maintaining controllability over the ignition and combustion processes. A stand-alone injection bench is employed to characterize the rate of injection for the diesel injection events, and a regression model is established to describe the injection timings and injector delays. A new combustion control parameter is proposed to characterize the extent of diffusion burning on a cycle-to-cycle basis by comparing the modelled rate of diesel injection with the rate of heat release in real time. The test results show that the proposed parameter, compared with the traditional ignition delay, better correlates to the enabling of low NOx and low smoke combustion.
Journal Article

Investigation of Fuel Injection Strategies for Direct Injection of Neat n-Butanol in a Compression Ignition Engine

2016-04-05
2016-01-0724
In this study, impacts of neat n-butanol fuel injection parameters on direct injection (DI) compression ignition (CI) engine performance were investigated to gain knowledge for understanding the fuel injection strategies for n-butanol. The engine tests were conducted on a four-stroke single-cylinder DI CI engine with a compression ratio of 18.2:1. The effects of fuel injection pressure (40, 60 and 90 MPa) and injection timing in a single injection strategy were investigated. The results showed that an increase in injection pressure significantly reduced nitrogen oxides (NOx) emissions which is the opposite trend seen in conventional diesel combustion. The parallel use of a higher injection pressure and retarded injection timing was a proposed method to reduce NOx and cylinder pressure rise rate simultaneously. NOx was further reduced by using exhaust gas recirculation (EGR) while keeping near zero soot emissions.
Journal Article

Heat Release Pattern Diagnostics to Improve Diesel Low Temperature Combustion

2008-06-23
2008-01-1726
Empirical results indicated that the engine emission and fuel efficiency of low-temperature combustion (LTC) cycles can be optimized by adjusting the fuel-injection scheduling in order to obtain appropriate combustion energy release or heat-release rate patterns. Based on these empirical results the heat-release characteristics were correlated with the regulated emissions such as soot, hydrocarbon and oxides of nitrogen. The transition from conventional combustion to LTC with the desired set of heat-release rate has been implemented. This transition was facilitated with the simplified heat-release characterization wherein each of the consecutive engine cycles was analyzed with a real-time controller embedded with an FPGA (field programmable gate array) device. The analyzed results served as the primary feedback control signals to adjust fuel injection scheduling. The experimental efforts included the boost/backpressure, exhaust gas recirculation, and load transients in the LTC region.
Journal Article

Fuel Injection Strategies to Improve Emissions and Efficiency of High Compression Ratio Diesel Engines

2008-10-06
2008-01-2472
Simultaneous low NOx (< 0.15 g/kWh) & soot (< 0.01 g/kWh) are attainable for enhanced premixed combustion that may lead to higher levels of hydrocarbons and carbon monoxide emissions as the engine cycles move to low temperature combustion, which is a departure from the ultra low hydrocarbon and carbon monoxide emissions, typical of the high compression ratio diesel engines. As a result, the fuel efficiency of such modes of combustion is also compromised (up to 5%). In this paper, advanced strategies for fuel injection are devised on a modern 4-cylinder common rail diesel engine modified for single cylinder research. Thermal efficiency comparisons are made between the low temperature combustion and the conventional diesel cycles. The fuel injection strategies include single injection with heavy EGR, and early multi-pulse fuel injection under low or medium engine loads respectively.
Journal Article

An Improvement on Low Temperature Combustion in Neat Biodiesel Engine Cycles

2008-06-23
2008-01-1670
Extensive empirical work indicates that the exhaust emission and fuel efficiency of modern common-rail diesel engines characterise strong resilience to biodiesel fuels when the engines are operating in conventional high temperature combustion cycles. However, as the engine cycles approach the low temperature combustion (LTC) mode, which could be implemented by the heavy use of exhaust gas recirculation (EGR) or the homogeneous charge compression ignition (HCCI) type of combustion, the engine performance start to differ between the use of conventional and biodiesel fuels. Therefore, a set of fuel injection strategies were compared empirically under independently controlled EGR, intake boost, and exhaust backpressure in order to improve the neat biodiesel engine cycles.
Journal Article

An Enabling Study of Diesel Low Temperature Combustion via Adaptive Control

2009-04-20
2009-01-0730
Low temperature combustion (LTC), though effective to reduce soot and oxides of nitrogen (NOx) simultaneously from diesel engines, operates in narrowly close to unstable regions. Adaptive control strategies are developed to expand the stable operations and to improve the fuel efficiency that was commonly compromised by LTC. Engine cycle simulations were performed to better design the combustion control models. The research platform consists of an advanced common-rail diesel engine modified for the intensified single cylinder research and a set of embedded real-time (RT) controllers, field programmable gate array (FPGA) devices, and a synchronized personal computer (PC) control and measurement system.
Technical Paper

Neat Biodiesel Fuel Engine Tests and Preliminary Modelling

2007-04-16
2007-01-0616
Engine performance and emission comparisons were made between the use of 100% soy, Canola and yellow grease derived biodiesel fuels and an ultra-low sulphur diesel fuel in the oxygen deficient regions, i.e. full or high load engine operations. Exhaust gas recirculation (EGR) was extensively applied to initiate low temperature combustion. An intake throttling valve was implemented to increase the differential pressure between the intake and exhaust in order to increase and enhance the EGR. The intake temperature, pressure, and EGR levels were modulated to improve the engine fuel efficiency and exhaust emissions. Furthermore, a preliminary ignition delay correlation under the influence of EGR was developed. Preliminary low temperature combustion modelling of the biodiesel and diesel fuels was also conducted. The research intends to achieve simultaneous reductions of nitrogen oxides and soot emissions in modern production diesel engines when biodiesel is applied.
Technical Paper

Heat Release Based Adaptive Control to Improve Low Temperature Diesel Engine Combustion

2007-04-16
2007-01-0771
Heat-release and cylinder pressure based adaptive fuel-injection control tests were performed on a modern common-rail diesel engine to improve the engine operation in the low-temperature combustion (LTC) region. A single shot injection strategy with heavy amount of exhaust gas recirculation (EGR) was used to modulate the in-cylinder charge conditions to achieve the low-temperature combustion. Adaptive fuel-injection techniques were used to anchor the cylinder pressure characteristics in the desired crank angle window and thereby stabilize the engine operation. The response of the adaptive control to boost, fueling, and engine speed variations was also tested. A combination of adaptive fuel-injection and automatic boost/back-pressure controls had helped to make the transient emissions comparable to the steady-state LTC emissions.
Technical Paper

An Investigation of EGR Treatment on the Emission and Operating Characteristics of Modern Diesel Engines

2007-04-16
2007-01-1083
Tests are conducted to improve the use of exhaust gas recirculation on a single cylinder diesel engine with EGR stream treatment techniques that include intake heating, combustible substance oxidation, catalytic fuel reforming, and partial bypass-flow control. In parallel with the empirical work, theoretical modeling analyses are performed to investigate the effectiveness of the reforming process and the combined effects on the overall system efficiency. The research is aimed at stabilizing and expanding the limits of heavy EGR during steady and transient operations so that the individual limiting conditions of EGR can be better identified. Additionally, the heavy EGR is applied to enable in-cylinder low temperature combustion. The effectiveness of EGR treatment on engine emission and operating characteristics are therefore reported.
Technical Paper

Energy Efficiency Analysis between In-cylinder and External Supplemental Fuel Strategies

2007-04-16
2007-01-1125
Preliminary empirical and modeling analyses are conducted to evaluate the energy efficiency of in-cylinder and external fuel injection strategies and their impact on the energy required to enable diesel particulate filter (DPF) regeneration for instance. During the tests, a thermal wave that is generated from the engine propagates along the exhaust pipe to the DPF substrate. The thermal response of the exhaust system is recorded with the thermocouple arrays embedded in the exhaust system. To implement the external fuel injection, an array of thermocouples and pressure sensors in the DPF provide the necessary feedback to the control system. The external fuel injection is dynamically adjusted based on the thermal response of the DPF substrate to improve the thermal management and to reduce the supplemental energy. This research intends to quantify the effectiveness of the supplemental energy utilization on aftertreatment enabling.
Technical Paper

Diesel EGR Fuel Reformer Improvement with Flow Reversal and Central Fueling

2008-06-23
2008-01-1607
Empirical work has been conducted with an EGR fuel reformer configured in a flow reversal and central fueling embedment to improve the fuel dispersion quality and the reforming energy efficiency. Comprehensive comparison analyses are made between the unidirectional flow and the periodic reversal flow embodiments of similar substrate size and properties; and between the inlet and central heating schemes. With a unidirectional EGR reformer, a large amount of supplemental heating is commonly required prior to reforming. The central-fueling and flow-reversal embedment in this study is shown to significantly reduce the supplemental heating energy. The EGR cooler loading for the two strategies is also analyzed. One-dimensional modeling analyses are conducted to evaluate the fuel delivery strategies and temperature profiles of the reformer at various reforming gas flow rates and engine-out exhaust temperatures and compositions.
Technical Paper

Prompt Heat Release Analysis to Improve Diesel Low Temperature Combustion

2009-06-15
2009-01-1883
Diesel engines operating in the low-temperature combustion (LTC) mode generally tend to produce very low levels of NOx and soot. However, the implementation of LTC is challenged by the higher cycle-to-cycle variation with heavy EGR operation and the narrower operating corridors. The robustness and efficiency of LTC operation in diesel engines can be enhanced with improvements in the promptness and accuracy of combustion control. A set of field programmable gate array (FPGA) modules were coded and interlaced to suffice on-the-fly combustion event modulations. The cylinder pressure traces were analyzed to update the heat release rate concurrently as the combustion process proceeds prior to completing an engine cycle. Engine dynamometer tests demonstrated that such prompt heat release analysis was effective to optimize the LTC and the split combustion events for better fuel efficiency and exhaust emissions.
Technical Paper

The Potential for Reducing CO and NOx Emissions from an HCCI Engine Using H2O2 Addition

2003-10-27
2003-01-3204
The effects of hydrogen peroxide addition on iso-octane/air Homogeneous Charge Compression Ignition (HCCI) combustion have been investigated analytically. Particular attention was focused on the predications involving homogeneous gas-phase kinetics. Use was made of Peters' iso-octane mechanism in CHEMKIN and convective heat transfer was included in the analyses. This enabled the influences that H2O2 addition has on species concentration and ignition promotion and hence exhaust emissions to be determined. It was found that both CO and NOx emission levels could be ameliorated. The former effect is considered to be a result of the decomposition of H2O2 into OH intermediate species and hence reducing the time to ignition and the onset of combustion.
Technical Paper

A Preliminary Study of Ignition Consistency and Heat Release Analysis for a Common-Rail Diesel Engine

2004-03-08
2004-01-0932
Common-rail fuel systems have been recognized as an effective means to shape the heat release rate. In this paper measured cylinder pressure and fuel injection data for a common-rail diesel engine were analyzed to develop an empirical heat release rate model. A set of discrete Wiebe functions, one to describe the pilot injection combustion and the other to describe the main injection combustion, have been proposed to model the heat release data. The coefficients in the model were adjusted to match the observed heat release diagram. An expression for ignition delay for pilot injection and main injection has also been suggested for test conditions.
Technical Paper

Performance of Stirling Engine Hybrid Electric Vehicles: A Simulation Approach

2001-08-20
2001-01-2513
Hybrid Vehicles have gained momentum in the automotive industry. The joint action of power sources and energy storage systems for energizing the vehicle improves the vehicle's fuel economy while reducing its pollutant emissions and noise levels, challenging automotive designers to optimize vehicle's cost, weight and control. The marketing success of hybrid vehicles significantly depends on the selection, integration and cost of the energy systems. The internal combustion engine, dominant of the vehicle market, has been the “option of choice” for auxiliary power unit of the hybrid vehicle, although other power sources as fuel cells, Stirling engines and gas turbines have been employed as well [1]. This document is focused in the application of Stirling engines as the power source for automobile propulsion.
Technical Paper

Emission Analysis of HCCI Combustion in a Diesel Engine Fueled by Butanol

2016-04-05
2016-01-0749
Advances in engine technology in recent years have led to significant reductions in the emission of pollutants and gains in efficiency. As a facet of investigations into clean, efficient combustion, the homogenous charge compression ignition (HCCI) mode of combustion can improve upon the thermal efficiency and nitrogen oxides emission of conventional spark ignition engines. With respect to conventional diesel engines, the low nitrogen oxides and particulate matter emissions reduce the requirements on the aftertreatment system to meet emission regulations. In this paper, n-butanol, an alcohol fuel with the potential to be derived from renewable sources, was used in a light-duty diesel research engine in the HCCI mode of combustion. Control of the combustion was implemented using the intake pressure and external exhaust gas recirculation. The moderate reactivity of butanol required the assistance of increased intake pressure for ignition at the lower engine load range.
Technical Paper

Heat Release Analysis of Clean Combustion with Ethanol Ignited by Diesel in a High Compression Ratio Engine

2016-04-05
2016-01-0766
The control of nitrogen oxide and smoke emissions in diesel engines has been one of the key researches in both the academia and industry. Nitrogen oxides can be effectively suppressed by the use of exhaust gas recirculation (EGR). However, the introduction of inert exhaust gas into the engine intake is often associated with high smoke emissions. To overcome these issues there have been a number of proposed strategies, one of the more promising being the use of low temperature combustion enabled with heavy EGR. This has the potential to achieve simultaneously low emissions of nitrogen oxide and smoke. However, a quantitative way to identify the transition zone between high temperature combustion and low temperature combustion has still not been fully explored. The combustion becomes even more complicated when ethanol fuel is used as a partial substitution for diesel fuel.
Technical Paper

A Preliminary Thermal Response Analysis of Exhaust Pipe Plenums for Diesel Aftertreatment Improvement

2006-10-16
2006-01-3310
Empirical and analytical investigations are conducted to evaluate the thermal response of exhaust pipe plenums at different levels of exhaust gas recirculation and through a variety of fuel delivery strategies. The effectiveness of different combustion control techniques is evaluated for moderating the engine-out exhaust temperature. Comparison of the external fuel injection with in-cylinder post injection for enabling aftertreatment is provided which indicates the stronger temperature raising potential of the external fuel injection. This research attempts to quantify the thermal response of the exhaust pipe plenums and its effects on the gas temperature at the inlet of the aftertreatment devices. The measurement and modeling of the dynamic thermal response in this research intend to improve the performance of diesel aftertreatment devices.
Technical Paper

Empirical Study of Energy in Diesel Combustion Emissions with EGR Application

2011-08-30
2011-01-1817
Modern diesel engines were known for producing ultra-low levels of hydrogen and hydrocarbons. However, as emission control techniques such as exhaust gas recirculation (EGR) are implemented to meet stringent NOx standards, the resulting increase in partial-combustion products can be significant in quantity both as pollutants and sources of lost engine efficiency. In this work, a modern common-rail diesel engine was configured to investigate the EGR threshold for elevated carbon monoxide, hydrocarbon, and hydrogen emissions at fixed loads and fixed heat-release phasing. It is noted that increase in hydrocarbons, in particular light hydrocarbons (such as methane, ethylene, and acetylene) was concurrent with ultra-low NOx emissions. Hydrogen gas can be emitted in significant quantities with the application of very high EGR. Under ultra-low NOx production conditions for medium and high load conditions, the light hydrocarbon species can account for the majority of hydrocarbon emissions.
Technical Paper

A Feasibility Study of Using DI Butanol as an Ignition Source for Dual-Fuel Combustion

2017-03-28
2017-01-0770
The combustion of dual-fuel engines usually uses a pilot flame to burn out a background fuel inside a cylinder under high compression. The background fuel can be either a gaseous fuel or a volatile liquid fuel, commonly with low reactivity to prevent premature combustion and engine knocking; whereas the pilot flame is normally set off with the direct injection of a liquid fuel with adequate reactivity that is suitable for deterministic auto-ignition with a high compression ratio. In this work, directly injected butanol is used to generate the pilot flame, while intake port injected ethanol or butanol is employed as the background fuel. Compared with the conventional diesel-only combustion, dual-fuel operations not only broaden the fuel applicability, but also enhance the potential for clean combustion, in high efficiency engines. The amount of background fuel and the scheduling of pilot flame are investigated through extensive laboratory experiments.
X