Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Gasoline Simulated Distillation Profiles of U.S. Market Gasoline and Impacts on Vehicle Particulate Emissions

2023-10-31
2023-01-1632
A gasoline’s distillation profile is directly related to its hydrocarbon composition and the volatility (boiling points) of those hydrocarbons. Generally, the volatility profiles of U.S. market fuels are characterized using a very simple, low theoretical plate distillation separation, detailed in the ASTM D86 test method. Because of the physical chemistry properties of some compounds in gasoline, this simple still or retort distillation has some limitations: separating azeotropes, isomers, and heavier hydrocarbons. Chemists generally rely on chromatographic separations when more detailed and precise results are needed. High-boiling aromatic compounds are the primary source of particulate emissions from spark ignited (SI), internal combustion engines (ICE), hence a detailed understanding and high-resolution separation of these heavy compounds is needed.
Journal Article

Development of a Predictive Model for Gasoline Vehicle Particulate Matter Emissions

2010-10-25
2010-01-2115
The relationship between gasoline properties and vehicle particulate matter emissions was investigated, for the purpose of constructing a predictive model. Various chemical species were individually blended with an indolene base fuel, and the solid particulate number (PN) emissions from each blend were measured over the New European Driving Cycle (NEDC). The results indicated that aromatics with a high boiling point and a high double bond equivalent (DBE) value tended to produce more PN emissions. However, high boiling point components with low DBE values, such as paraffins, displayed only a minor effect on PN. Upon further analysis of the test results, it was also confirmed that low vapor pressure components correlated with high PN emissions, as might be expected based on their combustion behavior. A predictive model, termed the “PM Index,” was constructed based on the weight fraction, vapor pressure, and DBE value of each component in the fuel.
Journal Article

Particle Emissions from a 2009 Gasoline Direct Injection Engine Using Different Commercially Available Fuels

2010-10-25
2010-01-2117
Total and solid particle mass, size, and number were measured in the dilute exhaust of a 2009 vehicle equipped with a gasoline direct injection engine along with an exhaust three-way-catalyst. The measurements were performed over the FTP-75 and the US06 drive cycles using three different U.S. commercially available fuels, Fuels A, B, and C, where Fuel B was the most volatile and Fuel C was the least volatile with higher fractions of low vapor pressure hydrocarbons (C10 to C12), compared to the other two fuels. Substantial differences in particle mass and number emission levels were observed among the different fuels tested. The more volatile gasoline fuel, Fuel B, resulted in the lowest total (solid plus volatile) and solid particle mass and number emissions. This fuel resulted in a 62 percent reduction in solid particle number and an 88 percent reduction in soot mass during the highest emitting cold-start phase, Phasel, of the FTP-75, compared to Fuel C.
Journal Article

Influence of Base Diesel Fuel upon Biodiesel Sludge Formation Tendency

2009-04-20
2009-01-0482
With the rise in the introduction of biodiesel fuel throughout the world, there has arisen the technical issue of sludge formation due to oxidation degradation. The main causes of this phenomenon are the methyl ester degradation products such as short-chain organic acids and oligomer compounds such as dimmer, trimer and tetramer acids, caused by the cleavage of the double bond in the fatty acid methyl esters (FAMEs) at high temperatures, and by the occurrence of polymerized matter. The authors focused on this sludge formation and carried out forced thermal oxidation with various combinations of diesel fuel (aromatic content about 20 vol%) with Rapeseed Methyl Ester (RME) and Soybean Methyl Ester (SME). As the results, the settlement of viscous sludge was observed. It was found that this phenomenon was pronounced with the low concentration blend (around 20 to 40 vol%) biodiesel at which the maximum value was indicated.
Technical Paper

Measurement of Ambient Roadway and Vehicle Exhaust Emissions-An Assessment of Instrument Capability and Initial On-Road Test Results with an Advanced Low Emission Vehicle

2000-03-06
2000-01-1142
The College of Engineering-Center for Environmental Research and Technology at the University of California, Riverside and Honda Motor Company are conducting a cooperative research program to study the emission characteristics and evaluate the environmental impact of advanced technology vehicles designed to have emission rates at, or below, the California ULEV standard. This program involves a number of technical challenges relating to instrumentation capable of measuring emissions at these low levels and utilizing this instrumentation to gather data under realistic conditions that will allow assessments of the environmental impact of these advanced vehicle technologies. This paper presents results on the performance and suitability of a Fourier Transform Infrared (FTIR) based on-board measurement system developed principally by Honda R&D for this task. This system has been designed to simultaneously measure vehicle exhaust and ambient roadway pollutant concentrations.
Technical Paper

Development of an On-Board Analyzer for Use on Advanced Low Emission Vehicles

2000-03-06
2000-01-1140
Measuring the real-world performance of emission control technologies is an important aspect in the development of advanced low-emission vehicles. In addition, data acquired from such measurements can be used to improve the accuracy of air quality predictive models. Honda has developed an on-board sampling/analysis system capable of measuring on-road emissions at ULEV levels and below. Ambient air can be analyzed simultaneously. This FTIR-based system can measure several species; this paper will focus on NMHC, NOX, and CO. Techniques were developed to address the challenges associated with acquiring accurate real-time data at concentrations below 1 ppm in an on-road vehicle. Validation studies performed with reference gases and vehicle exhaust indicate a very good correlation between the on-road analyzer system and classic bench methods for all target compounds. Dynamic studies performed by the University of California, Riverside, also show good correlation.
X