Refine Your Search

Search Results

Viewing 1 to 18 of 18
Technical Paper

Real-Time Calculation of EGR Rate and Intake Charge Oxygen Concentration for Misfire Detection in Diesel Engines

2011-09-11
2011-24-0149
A new procedure for the real-time estimation of the EGR rate and charge oxygen concentration has been developed, assessed and applied to a low-compression ratio GMPT-E EURO V diesel engine. High EGR rates are usually employed in modern diesel engines to reduce combustion temperatures and NOx emissions, especially at medium-low load and speed conditions. The EGR rate is usually calibrated in steady-state conditions, but, under transient conditions, it can be responsible for misfire occurrence or non optimal combustion cycles, if not properly controlled. In other words, combustion instabilities can occur, especially during tip-in maneuvers, which imply transition from high EGR (low load) to low EGR (high load) rates. Misfire is determined by a temporary reduction in the intake charge oxygen concentration during the closure of the EGR valve.
Technical Paper

Diagnostics of Mixing Process Dynamics, Combustion and Emissions in a Euro V Diesel Engine

2011-09-11
2011-24-0018
An innovative approach to the study of combustion and emission formation in modern diesel engines has been applied to a EURO V diesel engine equipped with an indirect-acting piezo injection system. The model is based on the joint use of a predictive non-stationary 1D spray model, which has recently been presented by Musculus and Kattke, and a diagnostic multizone thermodynamic model developed by the authors. The combustion chamber content has been split into homogeneous zones, to which mass and energy conservation laws have been applied: an unburned gas zone, made up of air, EGR and residual gas, several fuel/unburned gas mixture zones, premixed combustion burned gas zones and diffusive combustion burned gas zones. The 1D spray model enables the mixing process dynamics of the different fuel parcels with the unburned gas to be estimated for each injection pulse; therefore, the equivalent ratio time-history of each mixture zone can be estimated.
Journal Article

Combustion Prediction by a Low-Throughput Model in Modern Diesel Engines

2011-04-12
2011-01-1410
A new predictive zero-dimensional low-throughput combustion model has been applied to both PCCI (Premixed Charge Compression Ignition) and conventional diesel engines to simulate HRR (Heat Release Rate) and in-cylinder pressure traces on the basis of the injection rate. The model enables one to estimate the injection rate profile by means of the injection parameters that are available from the engine ECU (Electronic Control Unit), i.e., SOI (Start Of main Injection), ET (Energizing Time), DT (Dwell Time) and injected fuel quantities, taking the injector NOD (Nozzle Opening Delay) and NCD (Nozzle Closure Delay) into account. An accumulated fuel mass approach has been applied to estimate Qch (released chemical energy), from which the main combustion parameters that are of interest for combustion control in IC engines, such as, SOC (Start Of Combustion), MFB50 (50% of Mass Fraction Burned) have been derived.
Technical Paper

Development and Application of an Advanced Numerical Model for CR Piezo Indirect Acting Injection Systems

2010-05-05
2010-01-1503
A numerical model for simulating a Common Rail Piezo Indirect Acting fuel injection-system under steady state as well as transient operating conditions was developed using a commercial code. A 1D flow model of the main hydraulic system components, including the rail, the rail to injector connecting pipe and the injector, was applied in order to predict the influence of the injector layout and of each part of the hydraulic circuit on the injection system performance. The numerical code was validated through the comparison of the numerical results with experimental data obtained on a high performance test bench of the Moehwald-Bosch MEP2000/ CA4000 type. The developed injection-system mathematical model was applied to the analysis of transient flows in the hydraulic circuit paying specific attention to the fluid dynamics internal to the injector.
Journal Article

Effects of Rail Pressure, Pilot Scheduling and EGR Rate on Combustion and Emissions in Conventional and PCCI Diesel Engines

2010-04-12
2010-01-1109
In diesel engines the optimization of engine-out emissions, combustion noise and fuel consumption requires the experimental investigation of the effects of different injection strategies as well as of a large number of engine operating variables, such as scheduling of pilot and after pulses, rail pressure, EGR rate and swirl level. Due to the high number of testing conditions involved full factorial approaches are not viable, whereas Design of Experiment techniques have demonstrated to be a valid methodology. However, the results obtained with such techniques require a subsequent critical analysis, so as to investigate the cause and effect relationships between the set of engine operating variables and the combustion process characteristics that affect pollutant formation, noise of combustion and engine efficiency.
Technical Paper

Experimental Analysis of Combustion Processes and Emissions in a 2.0L Multi-Cylinder Diesel Engine Featuring a New Generation Piezo-Driven Injector

2009-09-13
2009-24-0040
In this paper, the potential of new generation piezo-driven indirect acting injectors on high feature diesel engine performance and emissions was assessed by combining experimental tests (carried out at both hydraulic and engine test beds) with the diagnostics of combustion and emissions. This latter was performed by means of a refined multizone combustion diagnostic tool previously developed at Politecnico di Torino. More in detail, a complete hydraulic characterization of the injection system has been carried out and injector performance, in terms of robustness and repeatability of the injection process, has been also evaluated. Injectors were then installed on 4-cylinder 2.0L Diesel engine and tests were performed in seven key-points, which were specifically selected so as to reproduce the engine operations over NEDC in terms of emissions and fuel consumption.
Journal Article

Combustion System Optimization of a Low Compression-Ratio PCCI Diesel Engine for Light-Duty Application

2009-04-20
2009-01-1464
A new combustion system with a low compression ratio (CR), specifically oriented towards the exploitment of partially Premixed Charge Compression Ignition (PCCI) diesel engines, has been developed and tested. The work is part of a cooperative research program between Politecnico di Torino (PT) and GM Powertrain Europe (GMPT-E) in the frame of Low Temperature Combustion (LTC) diesel combustion-system design and control. The baseline engine is derived from the GM 2.0L 4-cylinder in-line, 4-valve-per-cylinder EU5 engine. It features a CR of 16.5, a single stage VGT turbocharger and a second generation Common Rail (1600 bar). A newly designed combustion bowl was applied. It features a central dome and a large inlet diameter, in order to maximize the air utilization factor at high load and to tolerate advanced injection timings at partial load. Two different piston prototypes were manufactured by changing the internal volume of the new bowl so as to reach CR targets of 15.5 and 15.
Journal Article

Advanced Mathematical Modeling of Electronic Unit-Injector Systems for Heavy Duty Diesel Engine Application

2008-04-14
2008-01-1195
A rather complete mathematical model to simulate HD-diesel- engine EUI-system dynamics was developed and applied as a complementary tool of experimentation, for supporting design and performance optimization. The thermo-fluid dynamics of the hydraulic components, including plunger cavity, internal injector pipes and nozzle, was modeled with the solenoid-circuit electromagnetics and the mechanics of rocker arm and follower subsystem. Onedimensional flow equations in conservation form were used to simulate wave propagation phenomena through the injector high-pressure drilled passages. To calculate the temperature variations due to the compressibility of the liquid fuel, the energy equation was used in addition to mass conservation and momentum balance equations. Furthermore, in order to determine the value of the electromagnetic force acting on the spill-valve, the application of a practical procedure was made using easily available experimental current and voltage data.
Journal Article

Multi-Dimensional Modeling of Direct Natural-Gas Injection and Mixture Formation in a Stratified-Charge SI Engine with Centrally Mounted Injector

2008-04-14
2008-01-0975
Direct injection (DI) of natural gas (NG) at high pressure conditions has emerged as a high-potential strategy for improving SI engine performance. Besides, DI allows an increase in the fuel economy, due to the possibility of a significant engine dethrottling at partial load. The high-pressure gas injection can also increase the turbulence level of mixture and thus the overall fuel-air mixing. Since direct NG injection is an emerging technology, there is a lack of experience on the optimum configuration of the injection system and the associated combustion chamber design. In the last few years, some numerical investigations of gas injection have been made, mainly oriented at the development of reliable numerical investigation tools. The present paper is concerned with the development and application of a numerical Star-CD based model for the investigation of the direct NG injection process from a poppet-valve injector into a bowl-piston engine combustion chamber.
Technical Paper

New Modeling for Reliable Evaluation of Parameter Variability Effects on Vehicle Fuel Consumption

2007-04-16
2007-01-0328
In the next decade, energy conservation and greenhouse gas emission reduction will be key issues for developing new vehicles and powertrains. As is well known, CO2 emissions are straightly related to fuel consumption, and their measurement is carried out on the chassis dynamometer test bench simulating the vehicle road load. However, the measurement of vehicle fuel consumption by the NEDC procedure on the dynamometer test bench is affected not only by experimental uncertainties but also by test tolerances due to vehicle and powertrain parameters as well as to test facility and procedure. As a consequence, the test-result repeatability (results of different tests with the same vehicle on the same bench) and reproducibility (results of different tests with the same vehicle on different benches)must be carefully taken into account. An overall uncertainty of up to ± 10% can be expected for CO2 emission and fuel consumption figures.
Technical Paper

Common Rail without Accumulator: Development, Theoretical-Experimental Analysis and Performance Enhancement at DI-HCCI Level of a New Generation FIS

2007-04-16
2007-01-1258
An innovative hydraulic layout for Common Rail (C.R.) fuel injection systems was proposed and realized. The rail was replaced by a high-pressure pipe junction to have faster dynamic system response during engine transients, smaller pressure induced stresses and sensibly reduced production costs. Compared to a commercial rail, whose inside volume ranges from 20 to 40 cm3, such a junction provided a hydraulic capacitance of about 2 cm3 and had the main function of connecting the pump delivery to the electroinjector feeding pipes. In the design of the novel FIS layout, the choice of high-pressure pipe dimensions was critical for system performance optimization. Injector supplying pipes with length and inner diameter out of the actual production range were selected and applied, for stabilizing the system pressure level during an injection event and reduce pressure wave oscillations.
Technical Paper

Development and Assessment of a Multizone Combustion Simulation Code for SI Engines Based on a Novel Fractal Model

2006-04-03
2006-01-0048
A combustion simulation code for the prediction of heat release, flame propagation speed and pollutant formation in SI engines was developed and assessed. It is based on a multizone combustion model that takes the non-uniform spatial distribution of the in-cylinder burned-gas thermochemical properties into account. The multizone approach for burning rate calculation is coupled with a CAD procedure for the evaluation of burned-gas front area and radius. Specifically developed sub-models for determining CO and NO formation are included in the code. An original model based on the fractal geometry concept was used to describe the entrainment of fresh mixture through the flame front.
Technical Paper

Thermal Effect Simulation in High-Pressure Injection System Transient Flows

2004-03-08
2004-01-0532
Temperature variations due to compressibility effects of the liquid fuel were evaluated, for the first time in high-pressure injection system simulation, by employing the energy conservation equation, in addition to the mass-continuity and momentum-balance equations, as well as the constitutive state equation of the liquid. To that end, the physical properties (bulk elasticity modulus, thermal expansivity, kinematic viscosity) of the fluid were used as analytic functions of pressure and temperature obtained by interpolating carefully determined experimental data. Consistent with negligible thermal effects of heat transfer and viscous power losses involved in the flow process, the equation of energy was reduced to a state relation among the fluid thermodynamic properties, leading to a barotropic flow model.
Technical Paper

Analysis of Combustion Parameters and Their Relation to Operating Variables and Exhaust Emissions in an Upgraded Multivalve Bi-Fuel CNG SI Engine

2004-03-08
2004-01-0983
The combustion propagation and burned-gas expansion processes in a bi-fuel CNG SI engine were characterized by applying a newly developed diagnostic tool, in order to better understand how these processes are related to the fuel composition, to the engine operating variables as well as to the exhaust emissions. The diagnostic tool is based on an original multizone heat-release model that is coupled with a CADmodel of the burned-gas containing surface for the computation of the burning speed and the burned-gas mean expansion velocity. Furthermore, the thermal and prompt NO sub-models, embedded in the diagnostic code, were employed to study the effects ofNO formation mechanisms and thermodynamic parameters on nitric oxide emissions.
Technical Paper

High-Boost C.R. Diesel Engine: A Feasibility Study of Performance Enhancement and Exhaust-Gas Power Cogeneration

2002-10-21
2002-01-2814
The present work concerns the study of the potentialities of high-boost small-displacement C.R. (Common Rail) diesel engines where the compressor and the expander are mechanically disengaged for the purpose of power cogeneration from the exhaust gas. This objective can be achieved by means of advanced concept electrical devices capable of delivering the energy produced by the expander either to the drivetrain transmission or to the even more power-demanding auxiliary equipment of both the engine and the vehicle. The performance of a small-displacement boosted diesel engine with a common-rail injection system has been predicted by means of a computational code obtained by integrating different in-house non-commercial codes that simulate the intake, combustion and exhaust processes. The model validation has been carried out by means of the experimental data obtained at Fiat Research Center on a commercial small-displacement C.R. turbocharged diesel engine.
Technical Paper

Experimental Investigation of Fuel Consumption and Exhaust Emissions of a 16V Pent-Roof Engine Fueled by Gasoline and CNG

2001-03-05
2001-01-1191
A systematic experimental investigation was undertaken to compare the fuel consumption and exhaust emissions of a production SI engine fueled by either gasoline or compressed natural gas (CNG). The investigation was carried out on a two-liter four-cylinder engine featuring a fast-burn pent-roof chamber, one centrally located spark plug, four valves per cylinder and variable intake-system geometry. The engine was originally designed at Fiat to operate with unleaded gasoline and was then converted at Politecnico di Torino to run on CNG. A Magneti Marelli IAW electronic module for injection-duration and spark-advance setting was used to obtain a carefully controlled multipoint sequential injection for both fuels.
Technical Paper

Conversion of a Multivalve Gasoline Engine to Run on CNG

2000-03-06
2000-01-0673
A production SI engine originally designed at Fiat Auto to operate with unleaded gasoline was converted to run on natural gas. To that end, in addition to designing and building the CNG fuel plant, it was necessary to replace the multipoint electronic module for injection-duration and ignition-timing control with an ECM designed to obtain multipoint sequential injection. The engine was modified so as to work either with gasoline or natural gas. For the present investigation, however, the engine configuration was not optimized for running on methane, in order to compare the performance of the engine operated by the two different fuels with the same compression ratio. In fact, the engine is also interesting as a dual-fuel engine because of its relatively high compression ratio ≈10.5 that is almost suitable for CNG operation. The engine had the main features of being a multivalve, fast-burn pent-roof chamber engine with a variable intake-system geometry.
Technical Paper

Unsteady Convection Model for Heat Release Analysis of IC Engine Pressure Data

2000-03-06
2000-01-1265
A contribution has been given to the thermodynamics approach usually used for analyzing the combustion process in IC engines on the basis of cylinder pressure data reduction. A survey of heat release type combustion models and of their calibration methods has first been carried out with specific attention paid to the bulk gas-wall heat transfer correlations used. Experimental results have given evidence that most of these correlations are incapable of predicting the phase shift occurring between the gas-wall temperature difference and the heat transfer during the engine compression and expansion strokes, owing to the transient properties of the fluid directly in contact with the wall. This work develops and applies a refined procedure for heat release analysis of cylinder pressure data including the unsteadiness effects of the convective heat transfer process.
X