Refine Your Search

Topic

Search Results

Author:
Journal Article

Identifying Pedal Misapplication Behavior Using Event Data Recorders

2022-03-29
2022-01-0817
Pedal misapplication (PM) crashes, i.e., crashes caused by a driver pressing one pedal while intending to press another pedal, have historically been identified by searching unstructured crash narratives for keywords and verified via labor-intensive manual inspection. This study proposes an alternative method to identify PM crashes using event data recorders (EDRs). Since drivers in emergency braking situations are motivated to hit the brake hard, it follows that drivers in emergency braking situations that commit a PM would likewise hit the accelerator hard, likely harder than accelerator pedal application during normal driving. Thus, the time-series accelerator pedal position and the derived accelerator pedal application rate were used to isolate accelerator misapplications. Additional strategic filters were applied based on characteristics observed from previous PM analyses to reduce false positive PM identifications.
Journal Article

Long-Term Evolution of Straight Crossing Path Crash Occurrence in the U.S. Fleet: The Potential of Intersection Active Safety Systems

2019-04-02
2019-01-1023
Intersection collisions currently account for approximately one-fifth of all crashes and one-sixth of all fatal crashes in the United States. One promising method of mitigating these crashes and fatalities is to develop and install Intersection Advanced Driver Assistance Systems (I-ADAS) on vehicles. When an intersection crash is imminent, the I-ADAS system can either warn the driver or apply automated braking. The potential safety benefit of I-ADAS has been previously examined based on real-world cases drawn from the National Motor Vehicle Crash Causation Survey (NMVCCS). However, these studies made the idealized assumption of full installation in all vehicles of a future fleet. The objective of this work was to predict the reduction in Straight Crossing Path (SCP) crashes due to I-ADAS systems in the United States over time. The proportion of new vehicles with I-ADAS was modeled using Highway Loss Data Institute (HLDI) fleet penetration predictions.
Technical Paper

Has Electronic Stability Control Reduced Rollover Crashes?

2019-04-02
2019-01-1022
Vehicle rollovers are one of the more severe crash modes in the US - accounting for 32% of all passenger vehicle occupant fatalities annually. One design enhancement to help prevent rollovers is Electronic Stability Control (ESC) which can reduce loss of control and thus has great promise to enhance vehicle safety. The objectives of this research were (1) to estimate the effectiveness of ESC in reducing the number of rollover crashes and (2) to identify cases in which ESC did not prevent the rollover to potentially advance additional ESC development. All passenger vehicles and light trucks and vans that experienced a rollover from 2006 to 2015 in the National Automotive Sampling System Crashworthiness Database System (NASS/CDS) were analyzed. Each rollover was assigned a crash scenario based on the crash type, pre-crash maneuver, and pre-crash events.
Technical Paper

Preliminary Estimates of Near Side Crash Injury Risk in Best Performing Passenger Vehicles

2018-04-03
2018-01-0548
The goal of this paper is to estimate near-side injury risk in vehicles with the best side impact performance in the U.S. New Car Assessment Program (NCAP). The longer-term goal is to predict the incidence of crashes and injury outcomes in the U.S. in a future fleet of the 2025-time frame after current active and passive safety countermeasures are fully implemented. Our assumption was that, by 2025, all new vehicles will have side impact passive safety performance equivalent to current U.S. NCAP five star ratings. The analysis was based on real-world crashes extracted from case years 2010-2015 in the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS) in which front-row occupants of late-model vehicles (Model Year 2011+) were exposed to a near-side crash.
Technical Paper

Estimating Benefits of LDW Systems Applied to Cross-Centerline Crashes

2018-04-03
2018-01-0512
Objective: Opposite-direction crashes can be extremely severe because opposing vehicles often have high relative speeds. The most common opposite direction crash scenario occurs when a driver departs their lane driving over the centerline and impacts a vehicle traveling in the opposite direction. This cross-centerline crash mode accounts for only 4% of all non-junction non-interchange crashes but 25% of serious injury crashes of the same type. One potential solution to this problem is the Lane Departure Warning (LDW) system which can monitor the position of the vehicle and provide a warning to the driver if they detect the vehicle is moving out of the lane. The objective of this study was to determine the potential benefits of deploying LDW systems fleet-wide for avoidance of cross-centerline crashes. Methods: In order to estimate the potential benefits of LDW for reduction of cross-centerline crashes, a comprehensive crash simulation model was developed.
Technical Paper

Methodology for Estimating the Benefits of Lane Departure Warnings using Event Data Recorders

2018-04-03
2018-01-0509
Road departures are one of the most deadly crash modes, accounting for nearly one third of all crash fatalities in the US. Lane departure warning (LDW) systems can warn the driver of the departure and lane departure prevention (LDP) systems can steer the vehicle back into the lane. One purpose of these systems is to reduce the quantity of road departure crashes. This paper presents a method to predict the maximum effectiveness of these systems. Thirty-nine (39) real world crashes from the National Automotive Sampling System (NASS) Crashworthiness Data System (CDS) database were reconstructed using pre-crash velocities downloaded for each case from the vehicle event data recorder (EDR). The pre-crash velocities were mapped onto the vehicle crash trajectory. The simulations assumed a warning was delivered when the lead tire crossed the lane line. Each case was simulated twice with driver reaction times of 0.38 s and 1.36 s after which time the driver began steering back toward the road.
Technical Paper

Comparison of Time to Collision and Enhanced Time to Collision at Brake Application during Normal Driving

2016-04-05
2016-01-1448
The effectiveness of Forward Collision Warning (FCW) or similar crash warning/mitigation systems is highly dependent on driver acceptance. If a FCW system delivers the warning too early, it may distract or annoy the driver and cause them to deactivate the system. In order to design a system activation threshold that more closely matches driver expectations, system designers must understand when drivers would normally apply the brake. One of the most widely used metrics to establish FCW threshold is Time to Collision (TTC). One limitation of TTC is that it assumes constant vehicle velocity. Enhanced Time to Collision (ETTC) is potentially a more accurate metric of perceived collision risk due to its consideration of vehicle acceleration. This paper compares and contrasts the distribution of ETTC and TTC at brake onset in normal car-following situations, and presents probability models of TTC and ETTC values at braking across a range of vehicle speeds.
Technical Paper

Using Event Data Recorders from Real-World Crashes to Investigate the Earliest Detection Opportunity for an Intersection Advanced Driver Assistance System

2016-04-05
2016-01-1457
There are over 4,500 fatal intersection crashes each year in the United States. Intersection Advanced Driver Assistance Systems (I-ADAS) are emerging active safety systems designed to detect an imminent intersection crash and either provide a warning or perform an automated evasive maneuver. The performance of an I-ADAS will depend on the ability of the onboard sensors to detect an imminent collision early enough for an I-ADAS to respond in a timely manner. One promising method for determining the earliest detection opportunity is through the reconstruction of real-world intersection crashes. After determining the earliest detection opportunity, the required sensor range, orientation, and field of view can then be determined through the simulation of these crashes as if the vehicles had been equipped with an I-ADAS.
Journal Article

Investigation of Driver Lane Keeping Behavior in Normal Driving based on Naturalistic Driving Study Data

2016-04-05
2016-01-1449
Lane departure warning (LDW) systems can detect an impending road departure and deliver an alert to allow the driver to steer back to the lane. LDW has great potential to reduce the number of road departure crashes, but the effectiveness is highly dependent upon driver acceptance. If the driver perceives there is little danger after receiving an alert, the driver may become annoyed and deactivate the system. Most current LDW systems rely heavily upon distance to lane boundary (DTLB) in the decision to deliver an alert. There is early evidence that in normal driving DTLB may be only one of a host of other cues which drivers use in lane keeping and in their perception of lane departure risk. A more effective threshold for LDW could potentially be delivered if there was a better understanding of this normal lane keeping behavior. The objective of this paper is to investigate the lane keeping behavior of drivers in normal driving.
Journal Article

Target Population for Intersection Advanced Driver Assistance Systems in the U.S.

2015-04-14
2015-01-1408
Intersection crashes are a frequent and dangerous crash mode in the U.S. Emerging Intersection Advanced Driver Assistance Systems (I-ADAS) aim to assist the driver to mitigate the consequences of vehicle-to-vehicle crashes at intersections. In support of the design and evaluation of such intersection assistance systems, characterization of the road, environment, and drivers associated with intersection crashes is necessary. The objective of this study was to characterize intersection crashes using nationally representative crash databases that contained all severity, serious injury, and fatal crashes. This study utilized four national crash databases: the National Automotive Sampling System, General Estimates System (NASS/GES); the NASS Crashworthiness Data System (CDS); and the Fatality Analysis Reporting System (EARS) and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Analysis of Event Data Recorder Survivability in Crashes with Fire, Immersion, and High Delta-V

2015-04-14
2015-01-1444
Event data recorders (EDRs) must survive regulatory frontal and side compliance crash tests if installed within a car or light truck built on or after September 1, 2012. Although previous research has shown that EDR data are surviving these tests, little is known about whether EDRs are capable of surviving collisions of higher delta-v, or crashes involving vehicle fire or immersion. The goal of this study was to determine the survivability of light vehicle EDRs in real world fire, immersion, and high change in velocity (delta-v) cases. The specific objective was to identify the frequency of these extreme events and to determine the EDR data download outcome when subject to damage caused by these events. This study was performed using three crash databases: the Fatality Analysis Reporting System (FARS), the National Automotive Sampling System / Crashworthiness Data System (NASS/CDS), and the National Motor Vehicle Crash Causation Survey (NMVCCS).
Technical Paper

Survivability of Event Data Recorder Data in Exposure to High Temperature, Submersion, and Static Crush

2015-04-14
2015-01-1449
Event data recorder (EDR) data are currently only required to survive the crash tests specified by Federal Motor Vehicle Safety Standard (FMVSS) 208 and FMVSS 214. Although these crash tests are severe, motor vehicles are also exposed to more severe crashes, fire, and submersion. Little is known about whether current EDR data are capable of surviving these events. The objective of this study was to determine the limits of survivability for EDR data for realistic car crash conditions involving heat, submersion, and static crush. Thirty-one (31) EDRs were assessed in this study: 4 in the pilot tests and 27 in the production tests. The production tests were conducted on model year (MY) 2011-2012 EDRs enclosed in plastic, metal, or a combination of both materials. Each enclosure type was exposed to 9 tests. The high temperature tests were divided into 3 oven testing conditions: 100°C, 150°C, and 200°C.
Journal Article

Fleetwide Safety Benefits of Production Forward Collision and Lane Departure Warning Systems

2014-04-01
2014-01-0166
Forward Collision Warning (FCW) and Lane Departure Warning (LDW) systems are two active safety systems that have recently been added to the U.S. New Car Assessment Program (NCAP) evaluation. Vehicles that pass confirmation tests may advertise the presence of FCW and LDW alongside the vehicle's star safety rating derived from crash tests. This paper predicts the number of crashes and injured drivers that could be prevented if all vehicles in the U.S. fleet were equipped with production FCW and/or LDW systems. Models of each system were developed using the test track data collected for 16 FCW and 10 LDW systems by the NCAP confirmation tests. These models were used in existing fleetwide benefits models developed for FCW and LDW. The 16 FCW systems evaluated could have potentially prevented between 9% and 53% of all rear-end collisions and prevented between 19% and 60% of injured (MAIS2+) drivers. Earlier warning times prevented more warnings and injuries.
Journal Article

Validation of Event Data Recorders in Side-Impact Crash Tests

2014-04-01
2014-01-0503
This study evaluated the accuracy of 75 Event Data Recorders (EDRs) extracted from model year 2010-2012 Chrysler, Ford, General Motors, Honda, Mazda, and Toyota vehicles subjected to side-impact moving deformable barrier crash tests. The test report and vehicle-mounted accelerometers provided reference values to assess the EDR reported change in lateral velocity (delta-v), seatbelt buckle status, and airbag deployment status. Our results show that EDRs underreported the reference lateral delta-v in the vast majority of cases, mimicking the errors and conclusions found in some longitudinal EDR accuracy studies. For maximum lateral delta-v, the average arithmetic error was −3.59 kph (−13.8%) and the average absolute error was 4.05 kph (15.9%). All EDR reports that recorded a seatbelt buckle status data element correctly recorded the buckle status at both the driver and right front passenger locations.
Technical Paper

Assessment of Heavy Vehicle EDR Technologies

2013-09-24
2013-01-2402
Heavy-vehicle event data recorders (HVEDRs) provide a source of temporal vehicle data just prior to, during, and for a short period after, an event. In the 1990s, heavy-vehicle (HV) engine manufacturers expanded the capabilities of engine control units (ECU) and engine control modules (ECM) to include the ability to record and store small amounts of parametric vehicle data. This advanced capability has had a significant impact on vehicle safety by helping law enforcement, engineers, and researchers reconstruct events of a vehicle crash and understand the details surrounding that vehicle crash. Today, EDR technologies have been incorporated into a wide range of heavy vehicle (HV) safety systems (e.g., crash mitigation systems, air bag control systems, and behavioral monitoring systems). However, the adoption of EDR technologies has not been uniform across all classes of HVs or their associated vehicle systems.
Technical Paper

Validation of a Driver Recovery Model Using Real-World Road Departure Cases

2013-04-08
2013-01-0723
Predicting driver response to road departure and attempted recovery is a challenging but essential need for estimating the benefits of active safety systems. One promising approach has been to mathematically model the driver steering and braking inputs during departure and recovery. The objective of this paper is to compare a model developed by Volvo, Ford, and UMRTI (VFU) through the Advanced Crash Avoidance Technologies (ACAT) Program against a set of real-world departure events. These departure events, collected by Hutchinson and Kennedy, include the vehicle's off road trajectory in 256 road departure events involving passenger vehicles. The VFU-ACAT model was exercised for left side road departures onto the median of a divided highway with a speed limit of 113 kph (70 mph). At low departure angles, the VFU-ACAT model underpredicted the maximum lateral and longitudinal distances when compared to the departure events measured by Hutchinson and Kennedy.
Journal Article

Validation of Event Data Recorders in High Severity Full‑Frontal Crash Tests

2013-04-08
2013-01-1265
This study evaluates the accuracy of 41 Event Data Recorders (EDR) extracted from model year 2012 General Motors, Chrysler, Ford, Honda, Mazda, Toyota, and Volvo vehicles subjected to New Car Assessment Program 56 kph full-frontal barrier crash tests. The approach was to evaluate (1) the vehicle longitudinal change in velocity or delta-V (ΔV) as measured by EDRs in comparison with the high-precision accelerometers mounted onboard test vehicles and (2) the accuracy of pre-crash speed, seatbelt buckle status, and frontal airbag deployment status. On average the absolute error for pre-crash speed between the EDR and reference instrumentation was only 0.58 kph, or 1.0% of the nominal impact speed. In all cases in which the EDRs recorded the seatbelt buckle status of the driver or right front passenger, the modules correctly reported that the occupants were buckled. EDRs reported airbag deployment correctly in all of the tests.
Journal Article

Characterization of Lane Departure Crashes Using Event Data Recorders Extracted from Real-World Collisions

2013-04-08
2013-01-0730
Lane Departure Warning (LDW) is a production active safety system that can warn drivers of an unintended departure. Critical in the design of LDW and other departure countermeasures is understanding pre-crash driver behavior in crashes. The objective of this study was to gain insight into pre-crash driver behavior in departure crashes using Event Data Recorders (EDRs). EDRs are units equipped on many passenger vehicles that are able to store vehicle data, including pre-crash data in many cases. This study used 256 EDRs that were downloaded from GM vehicles involved in real-world lane departure collisions. The crashes were investigated as part of the NHTSA's NASS/CDS database years 2000 to 2011. Nearly half of drivers (47%) made little or no change to their vehicle speed prior to the collision and slightly fewer decreased their speed (43%). Drivers who did not change speed were older (median age 41) compared to those who decreased speed (median age 27).
Journal Article

Field Relevance of the New Car Assessment Program Lane Departure Warning Confirmation Test

2012-04-16
2012-01-0284
The availability of active safety systems, such as Lane Departure Warning (LDW), has recently been added as a rating factor in the U.S. New Car Assessment Program (NCAP). The objective of this study is to determine the relevance of the NCAP LDW confirmation test to real-world road departure crashes. This study is based on data collected as part of supplemental crash reconstructions performed on 890 road departure collisions from the National Automotive Sampling System, Crashworthiness Data System (NASS/CDS). Scene diagrams and photographs were examined to determine the lane departure and lane marking characteristics not available in the original data. The results suggest that the LDW confirmation test captures many of the conditions observed in real-world road departures. For example, 40% of all single vehicle collisions in the dataset involved a drift-out-of-lane type of departures represented by the test.
Journal Article

Method for Estimating Time to Collision at Braking in Real-World, Lead Vehicle Stopped Rear-End Crashes for Use in Pre-Crash System Design

2011-04-12
2011-01-0576
This study presents a method for determining the time to collision (TTC) at which a driver of the striking vehicle in a real-world, lead vehicle stopped (LVS) rear-end collision applied the brakes. The method employs real-world cases that were extracted from the National Automotive Sampling System / Crashworthiness Data System (NASS / CDS) years 2000 to 2009. Selected cases had an Event Data Recorder (EDR) recovered from the striking vehicle that contained pre-crash vehicle speed and brake application. Of 59 cases with complete EDR records, 12 cases (20%) of drivers appeared not to apply the brakes at all prior to the collision. The method was demonstrated using 47 rear-end cases in which there was driver braking. The average braking deceleration for those cases with sufficient vehicle speed information was found to be 0.52 g's. The average TTC that braking was initiated at was found to vary in the sample population from 1.1 to 1.4 seconds.
X