Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Characterization of Edge Fracture in Various Types of Advanced High Strength Steel

2011-04-12
2011-01-1058
In vehicle crash events there is the potential for fracture to occur at the processed edges of structural components. The ability to avoid these types of fractures is desired in order to minimize intrusion and optimize energy absorption. However, the prediction of edge cracking is complicated by the fact that conventional tensile testing can provide insufficient data in regards to the local fracture behavior of advanced high strength steels. Fracture prediction is also made difficult because there can be inadequate data on how the cutting processes used for hole piercing and blanking affect the edge condition. In order to address these challenges, research was undertaken to analyze edge fracture in simple test pieces configured with side notches and center holes. Test specimens were made from a number of advanced high strength steels including 590R (C-Mn), 780T (TRIP), 980Y (dual phase) and hot stamp 1500 (martensitic).
Technical Paper

Adhesive Bonding Performance of GA Coated 590 MPa Tensile Strength Steels

2011-04-12
2011-01-1052
Advanced high strength steels (AHSS) are becoming major enablers for vehicle light weighting in the automotive industry. Crash resistant and fracture-toughened structural adhesives have shown potential to improve vehicle stiffness, noise, vibration, and harshness (NVH), and crashworthiness. They provide weight reduction opportunity while maintaining crash performance or weight increase avoidance while meeting the increasing crash requirement. Unfortunately, the adhesive bonding of galvanneal (GA)-coated steels has generally yielded adhesive failures with the GA coating peeling from the steel substrate resulting in poor bond strength. A limited study conducted by ArcelorMittal and Dow Automotive in 2008 showed that GA-coated AHSS exhibited cohesive failure, and good bond strength and crash performance. In order to confirm the reliable performance, a project focusing on the consistency of the adhesive bond performance of GA-coated steels of 590 MPa strength level was initiated.
Technical Paper

Sheared Edge Characterization of Steel Products used for Closure Panel Applications

2006-04-03
2006-01-1589
Application of Advanced High Strength Steels (AHSS) to closure and structural parts in the automotive industry is increasing in future models. In addition to weight reduction, the other primary motivation to consider these products is the improvement of structural performance that is needed to meet future stringent safety standards. AHSS products have a combination of unique microstructures and mechanical behavior. It is important to develop basic knowledge and understanding of all the manufacturing aspects of forming these products, so that robust forming processes can be engineered to successfully form parts in a production environment. The edge condition obtained after post-draw operations such as trimming has a significant influence on processes such as stretch flanging. A study to investigate the influence of punching clearance on the edge characteristics of various AHSS products has been initiated at Mittal Steel R&D.
Technical Paper

A New Dual Phase Steel for Automotive Body Panels

2003-03-03
2003-01-0518
In an effort to optimize outer body panel steel utilization with respect to dent resistance performance and weight reduction, the automotive industry continues to investigate the application of higher strength steels. Most recently, dual phase steel has been recognized as a very promising material substrate for outer body panel application, due to its inherent formability and final part performance attributes. This paper presents a comprehensive study of Ispat Inland's new electrogalvanized dual phase “DI-FORM 500” product, which was specifically designed to meet automotive exposed quality standards. It reviews the mechanical properties, aging characteristics, formability, dent resistance, weldability and fatigue strength of this product, along with a representation of its application advantages to the automotive industry, in terms of part performance, weight savings and cost avoidance.
Technical Paper

Application of Dual-Phase Steels for Automotive Closure Panels

2003-03-03
2003-01-0519
With interest in improving vehicle quality and customer satisfaction, Ford Motor Company initiated an effort aimed at improving dent resistance of closure panels. An investigation of various means of product improvement led to the recognition of dual phase steels, due to their inherent formability and strain hardening attributes, as the most appropriate steel panel for outer panel applications. Ispat Inland's new Electro-galvanized dual phase steel DI-FORM 500 (henceforth referred to by the generic designation, DP500), which meets 500 MPa minimum tensile strength, was specifically designed to meet automotive exposed quality standards. This paper compares the dent resistance performance of automotive door assemblies manufactured with both Bake Hardenable 210 (BH210) and DP500 door outer panels. Results indicate the achievement of significantly improved outer panel dent resistance through the use of the DP500 product.
X