Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Responses of Rear Seat ATDs in Frontal Impact Sled Tests: Evaluation of Two Seat Belt Configurations

2017-03-28
2017-01-1474
Sled tests simulating full-frontal rigid barrier impact were conducted using the Hybrid III 5th female and the 50th male anthropomorphic test devices (ATDs). The ATDs were positioned in the outboard rear seat of a generic small car environment. Two belt configurations were used: 1) a standard belt with no load limiter or pre-tensioner and 2) a seatbelt with a 4.5 kN load-limiting retractor with a stop function and a retractor pre-tensioner (LL-PT). In the current study, the LL-PT belt system reduced the peak responses of both ATDs. Probabilities of serious-to-fatal injuries (AIS3+), based on the ATDs peak responses, were calculated using the risk curves in NHTSA’s December 2015 Request for Comments (RFC) proposing changes to the United States New Car Assessment Program (US-NCAP). Those probabilities were compared to the injury rates (IRs) observed in the field on point estimate basis.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Frontal Sled Impact

2015-04-14
2015-01-1489
Transfer or response equations are important as they provide relationships between the responses of different surrogates under matched, or nearly identical loading conditions. In the present study, transfer equations for different body regions were developed via mathematical modeling. Specifically, validated finite element models of the age-dependent Ford human body models (FHBM) and the mid-sized male Hybrid III (HIII50) were used to generate a set of matched cases (i.e., 192 frontal sled impact cases involving different restraints, impact speeds, severities, and FHBM age). For each impact, two restraint systems were evaluated: a standard three-point belt with and without a single-stage inflator airbag. Regression analyses were subsequently performed on the resulting FHBM- and HIII50-based responses. This approach was used to develop transfer equations for seven body regions: the head, neck, chest, pelvis, femur, tibia, and foot.
Journal Article

Finite-Element-Based Transfer Equations: Post-Mortem Human Subjects versus Hybrid III Test Dummy in Blunt Impact

2014-04-01
2014-01-0486
In the present study, transfer equations relating the responses of post-mortem human subjects (PMHS) to the mid-sized male Hybrid III test dummy (HIII50) under matched, or nearly-identical, loading conditions were developed via math modeling. Specifically, validated finite element (FE) models of the Ford Human Body Model (FHBM) and the HIII50 were used to generate sets of matched cases (i.e., 256 frontal impact cases involving different impact speeds, severities, and PMHS age). Regression analyses were subsequently performed on the resulting age-dependent FHBM- and HIII50-based responses. This approach was conducted for five different body regions: head, neck, chest, femur, and tibia. All of the resulting regression equations, correlation coefficients, and response ratios (PHMS relative to HIII50) were consistent with the limited available test-based results.
Journal Article

Further Validation of Age-Dependent FE Models of a Mid-Sized Male Thorax

2012-04-16
2012-01-0582
The objective of this study was to further validate three previously-developed, age-dependent finite element models representing 35, 55, and 75 year old mid-sized males. The validation was based on comparisons with the following published tests involving post mortem human subjects: oblique thoracic and abdominal pendulum impact (4-10 m/s), oblique and lateral thoracic pendulum impact (2.5 m/s), and lateral thoracic pendulum impact (4.3 and 6.7 m/s). The responses of the models were compared to cadaveric response corridors and responses from specific cadavers similar in size and age. When compared to the cadaveric response corridors, the model responses were generally within those corridors. When compared to the responses of specific cadavers, the results were mixed. In some of the cases the model responses predicted the age-dependency of the cadaveric responses. In other cases, the model responses had the opposite trend of those of the cadavers.
X