Refine Your Search

Topic

Search Results

Author:
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Journal Article

A Computational Study of Rear-Facing and Forward-Facing Child Restraints

2008-04-14
2008-01-1233
A recent study of U.S. crash data has shown that children 0-23 months of age in forward-facing child restraint systems (FFCRS) are 76% more likely to be seriously injured in comparison to children in rear-facing child restraint systems (RFCRS). Motivated by the epidemiological data, seven sled tests of dummies in child seats were performed at the University of Virginia using a crash pulse similar to FMVSS 213 test conditions. The tests showed an advantage for RFCRS; however, real-world crashes include a great deal of variability among factors that may affect the relative performance of FFCRS and RFCRS. Therefore, this research developed MADYMO computational models of these tests and varied several real-world parameters. These models used ellipsoid models of Q-series child dummies and facet surface models of American- and Swedish- style convertible child restraints (CRS).
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

A Normalization Technique for Developing Corridors from Individual Subject Responses

2004-03-08
2004-01-0288
This paper presents a technique for developing corridors from individual subject responses contained in experimental biomechanical data sets. Force-deflection response is used as an illustrative example. The technique begins with a method for averaging human subject force-deflection responses in which curve shape characteristics are maintained and discontinuities are avoided. Individual responses sharing a common characteristic shape are averaged based upon normalized deflection values. The normalized average response is then scaled to represent the given data set using the mean peak deflection value associated with the set of experimental data. Finally, a procedure for developing a corridor around the scaled normalized average response is presented using standard deviation calculations for both force and deflection.
Technical Paper

An Evaluation of a Fiber Optic Based Sensor for Measuring Chest and Abdominal Deflection

2005-04-11
2005-01-0745
The objective of this study was to investigate the use of a fiber optic based sensor, ShapeTape, as an instrument for measuring abdominal and chest deflection, and to compare it to the current instrument used in impact biomechanics applications, the chestband. Drift, pressure, and temperature tests were conducted for ShapeTape alone, whereas quasi-static and dynamic loading tests were conducted as comparison tests between the chestband and ShapeTape. The effects of drift and temperature on ShapeTape were very small, averaging 0.26% and 1.2% full scale changes respectively. During the pressure test at a load of 1000 N the ShapeTape sensor tested experience a 7.47% full scale voltage change. The average errors in reporting maximum deflection of the chest form during the quasi-static loading tests were 3.35% and 1.64% for ShapeTape and the chestband respectively.
Technical Paper

Assessment of the Thor and Hybrid III Crash Dummies: Steering Wheel Rim Impacts to the Upper Abdomen

2004-03-08
2004-01-0310
This investigation explored THOR's force-deflection response to upper abdomen/lower ribcage steering wheel rim impacts in comparison to the Hybrid III and cadaver test subjects. The stationary subjects were impacted by a ballasted surrogate wheel propelled at 4 m/s, a test condition designed to approximate the upper abdomen impacting a steering wheel rim in a frontal crash. Both the standard THOR and the Hybrid III crash dummies were substantially stiffer than the cadavers. Removing THOR's torso skin and foam from the upper abdomen and replacing the standard Hybrid III abdomen with a prototype gel-filled unit produced force-deflection results that were more similar to the cadavers. THOR offers advantages over the Hybrid III because of its ability to measure abdominal deflection. THOR, with modification, would be a useful instrument with which to assess the crashworthiness of steering assemblies and restraint systems in frontal crashes.
Technical Paper

Biofidelity Improvements to the Polar-II Pedestrian Dummy Lower Extremity

2007-04-16
2007-01-0757
Experimental tests were performed on the modified Polar-II pedestrian dummy lower extremity components to evaluate their biofidelity in lateral impact loading corresponding to a 40 km/h pedestrian-car collision. The bending moment-angle response from a newly developed knee joint, dynamically loaded in four-point valgus bending, was compared against previously published postmortem human subject (PMHS) response corridors. In addition to the stiffness characteristics of the knee joint, individual ligament forces were also recorded during the bending tests. The evaluated force-relative elongation response of the medial collateral ligament (MCL) in the new knee was compared against PMHS data on MCL tensile stiffness. Lower extremity long bones developed for improved anthropometrical accuracy and deformability were dynamically loaded in latero-medial three-point bending.
Technical Paper

Characterization of the Rate-Dependent Mechanical Properties and Failure of Human Knee Ligaments

2005-04-11
2005-01-0293
The structural properties of the four major human knee ligaments were investigated at different loading rates. Bone-ligament-bone specimens of the medial and lateral collateral ligaments and the anterior and posterior cruciate ligaments, obtained from post-mortem human donors, were tested in knee distraction loading in displacement control. All ligaments were tested in the anatomical position corresponding to a fully extended knee. The rate dependence of the structural response of the knee ligaments was investigated by applying loading-unloading cycles at a range of distraction rates. Ramps to failure were applied at knee distraction rates of 0.016 mm/s, 1.6 mm/s, or 1,600 mm/s. Averages and corridors were constructed for the force response and the failure point of the different ligaments and loading rates. The structural response of the knee ligaments was found to depend on the deformation rate, being both stiffer and more linear at high loading rates.
Technical Paper

Comparative Evaluation of Dummy Response with Thor-Lx/HIIIr and Hybrid III Lower Extremities

2002-03-04
2002-01-0016
Multiple series of frontal sled tests were performed to evaluate the new Thor-Lx/HIIIr lower extremity developed by the National Highway Traffic Safety Administration for retrofit use on the 50th percentile male Hybrid III. This study's objective was to compare the Thor-Lx/HIIIr to the existing Hybrid III dummy leg (HIII) from the standpoint of repeatability and effects on femur and upper body response values.\ The test-to-test repeatability of the dummy responses, as measured by the coefficient of variation (CV), was generally acceptable (CV < 10%) for all of the test conditions for both legs. Overall, tests with the Thor-Lx/HIIIr legs produced upper body movement and injury criteria values for the head and chest that were acceptably consistent and were generally indistinguishable from those produced with the HIII leg. Low right femur loads, which ranged from 4 to 25 percent of the injury assessment reference value, varied substantially test-to-test for tests with both types of legs.
Technical Paper

Comparison of Belted Hybrid III, THOR, and Cadaver Thoracic Responses in Oblique Frontal and Full Frontal Sled Tests

2003-03-03
2003-01-0160
This paper compares restrained Hybrid III and THOR thoracic kinematics and cadaver injury outcome in 30° oblique frontal and in full frontal sled tests. Peak shoulder belt tension, the primary source of chest loading, changed by less than four percent and peak chest resultant acceleration changed by less than 10% over the 30° range tested. Thoracic kinematics were likewise insensitive to the direction of the collision vector, though they were markedly different between the two dummies. Mid-sternal Hybrid III chest deflection, measured by the standard sternal potentiometer and by supplemental internal string potentiometers, was slightly lower (∼10%) in the oblique tests, but the oblique tests produced a negligible increase in lateral movement of the sternum. In an attempt to understand the biofidelity of these dummy responses, a series of 30-km/h human cadaver tests having several collision vectors (0°, 15°, 30°, 45°) was analyzed.
Technical Paper

Comprehensive Computational Rollover Sensitivity Study Part 2: Influence of Vehicle, Crash, and Occupant Parameters on Head, Neck, and Thorax Response

2011-04-12
2011-01-1115
Fatalities resulting from vehicle rollover events account for over one-third of all U.S. motor vehicle occupant fatalities. While a great deal of research has been directed towards the rollover problem, few studies have attempted to determine the sensitivity of occupant injury risk to variations in the vehicle (roof strength), crash (kinematic conditions at roof-to-ground contact), and occupant (anthropometry, position and posture) parameters that define the conditions of the crash. A two-part computational study was developed to examine the sensitivity of injury risk to changes in these parameters. The first part of this study, the Crash Parameter Sensitivity Study (CPSS), demonstrated the influence of parameters describing the vehicle and the crash on vehicle response using LS-DYNA finite element (FE) simulations.
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Journal Article

Design of a Dynamic Rollover Test System

2011-04-12
2011-01-1116
A dynamic rollover test system (DRoTS) capable of simulating rollover crashes in a laboratory was designed for research use at the University of Virginia. The goal of the current study is to describe the system's capabilities and specifications as well as to explore the limitations of the system's ability to simulate rollover crashes. The test apparatus was designed to permit simulation of a single roof-to-ground interaction of a rollover crash with the potential to be modified for evaluation of pre-roof contact occupant motion. Special considerations were made to permit testing of both dummies and post-mortem human surrogates in both production vehicles and a parametric test buck. DRoTS permits vertical translation, pitch, and roll of the test vehicle while constraining longitudinal and lateral translations and yaw. The study details the ranges of test parameters capable with the DRoTS and evaluates the limitations of the system relative to rollover crash conditions.
Technical Paper

Design of a Full-Scale Impact System for Analysis of Vehicle Pedestrian Collisions

2005-04-11
2005-01-1875
The complexity of vehicle-pedestrian collisions necessitates extensive validation of pedestrian computational models. While body components can be individually simulated, overall validation of human pedestrian models requires full-scale testing with post mortem human surrogates (PMHS). This paper presents the development of a full-scale pedestrian impact test plan and experimental design that will be used to perform PMHS tests to validate human pedestrian models. The test plan and experimental design is developed based on the analysis of a combination of literature review, multi-body modeling, and epidemiologic studies. The proposed system has proven effective in testing an anthropometrically correct rescue dummy in multiple instances. The success of these tests suggests the potential for success in a full-scale pedestrian impact test using a PMHS.
Technical Paper

Development and Validation of a Finite Element Model for the Polar-II Upper Body

2006-04-03
2006-01-0684
The goal of this study was to develop and validate a finite element (FE) model of the Polar-II pedestrian dummy. An upper body model consisting of the head, neck, shoulder, thorax, and abdomen was coupled with a previously validated model of the lower limb The viscoelastic material properties of the dummy components were determined from dynamic compression tests of shoulder urethane, shoulder rubber and abdominal foam. For validation of the entire upper body, the model was compared with NHTSA response requirements for their advanced frontal dummy (Thor) including head and neck pendulum tests as well as ribcage and abdominal impact tests. In addition, the Polar-II full body FE model was subjected to simulated vehicle-pedestrian impacts that recreated published experiments. Simulated head and pelvis accelerations as well as upper body trajectories reasonably reproduced the experiment.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Dynamic Response Corridors of the Human Thigh and Leg in Non-Midpoint Three-Point Bending

2005-04-11
2005-01-0305
Current standards and test devices for pedestrian safety are developed using results from impact tests where inertial considerations have dominated and the vehicle pedestrian loading environment has not been properly replicated. When controlled tests have been conducted to evaluate the biofidelity of anthropometric test devices, current designs have faired poorly. The objective of the current study was to develop dynamic force-deflection and moment-deflection response corridors for the 50th percentile adult male thigh and leg subjected to non-midpoint 3-point bending at rates characteristic of the vehicle-pedestrian loading environment. Six thigh and eight leg specimens were harvested from eight adult male human cadavers and ramped to failure in dynamic 3-point bending in the latero-medial direction.
Technical Paper

Elimination of Thoracic Muscle Tensing Effects for Frontal Crash Dummies

2005-04-11
2005-01-0307
Current crash dummy biofidelity standards include the estimated effects of tensing the muscles of the thorax. This study reviewed the decision to incorporate muscle tensing by examining relevant past studies and by using an existing mathematical model of thoracic impacts. The study finds evidence that muscle tensing effects are less pronounced than implied by the biofidelity standard response corridors, that the response corridors were improperly modified to include tensing effects, and that tensing of other body regions, such as extremity bracing, may have a much greater effect on the response and injury potential than tensing of only the thoracic musculature. Based on these findings, it is recommended that muscle tensing should be eliminated from thoracic biofidelity requirements until there is sufficient information regarding multi-region muscle tensing response and the capability to incorporate this new data into a crash dummy.
Technical Paper

Error Analysis of Curvature-Based Contour Measurement Devices

2000-03-06
2000-01-0054
Curvature-based contour measurement devices with discrete curvature measurement gauges are widely used for the measurement of dynamic thoracic contours in both dummy and cadaveric automobile sled testing. Such devices include the chestband used to determine local thoracic contours at several rib levels for evaluation of injury parameters in dummy and cadaveric subjects. The use of these devices involves integration of local curvatures to obtain position data, and often incorporates several approximations, including a quasi-continuous approximation of discrete measured curvatures. By comparing a reference and a calculated position profile, this study analyzes the error in local positions induced from several sources. The first source of error is the measurement of curvatures at discrete locations, typically with 2.5 - 5.0 cm curvature gauge spacing.
Technical Paper

Evaluation of Biofidelity of Side Impact Computational Surrogates (ES-2re, WorldSID, GHBMC)

2014-04-01
2014-01-0541
The goal of this study was to evaluate the biofidelity of the three computational surrogates (GHBMC model, WorldSID model, and the FTSS ES-2re model) under the side impact rigid wall sled test condition. The responses of the three computational surrogates were compared to those of post mortem human surrogate (PMHS) and objectively evaluated using the correlation and analysis (CORA) rating method. Among the three computational surrogates, the GHBMC model showed the best biofidelity based on the CORA rating score (GHBMC =0.65, WorldSID =0.57, FTSS ES-2re =0.58). In general, the response of the pelvis of all the models showed a good correlation with the PMHS response, while the response of the shoulder and the lower extremity did not. In terms of fracture prediction, the GHBMC model overestimated bone fracture.
X