Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

API CJ-4: Diesel Oil Category for Both Legacy Engines and Low Emission Engines Using Diesel Particulate Filters

2006-10-16
2006-01-3439
In order to meet the U.S. EPA's 2007 on-highway emission standards for particulate and NOx, all diesel engines will require diesel particulate fi lters (DPFs) and cooled exhaust gas recirculation (EGR) and will utilize ultra-low sulfur fuel. As this will be the first time that all on-highway diesel engines will employ DPFs combined with ultra-low-sulfur fuel, the Engine Manufacturers Association (EMA) requested that a new oil category be developed to provide compatibility with DPFs in the exhaust system, as well as engine durability for both new and legacy engines. This paper reviews the development of this new oil category called API CJ-4, which will be introduced in October 2006. This diesel engine oil category is the first in the U.S. which limits the oil's sulfated ash, phosphorus, and sulfur in order to insure adequate service life of the DPF. The API CJ-4 oil category includes 9 fi red engine tests and 6 bench tests.
Technical Paper

Enhancement of the Sequence IIIG by the Study of Oil Consumption

2004-06-08
2004-01-1893
The Sequence IIIG is a newly developed 100 hour test used to evaluate the performance of crankcase engine oils in the areas of high temperature viscosity increase, wear, deposits, pumpability, and ring sticking for the North American GF-4 standard. Data from the ASTM Precision Matrix, completed in the spring of 2003, along with early reference data from the Lubricant Test Monitoring System (LTMS) showed unexpected test results for selected oils and indicated that percent viscosity increase and pumpability were highly correlated with oil consumption. This correlation led to an intensive study of the factors that influence oil consumption and an attempt to compensate for non-oil related oil consumption through a model based adjustment of the results. The study and scrutiny of the IIIG data has led to more uniform oil consumption in the test and improved test precision, and has eliminated the need for a correction equation based on non-oil related oil consumption.
Technical Paper

Over a Decade of LTMS

2004-06-08
2004-01-1891
The Lubricant Test Monitoring System (LTMS) is the calibration system methodology and protocol for North American engine oil and gear oil tests. This system, administered by the American Society for Testing Materials (ASTM) Test Monitoring Center (TMC) since 1992, has grown in scope from five gasoline engine tests to over two dozen gasoline, heavy duty diesel and gear oil tests ranging from several thousand dollars per test to almost one-hundred thousand dollars per test. LTMS utilizes Shewhart and Exponentially Weighted Moving Average (EWMA) control charts of reference oil data to assist in the decision making process on the calibration status of test stands and test laboratories. Equipment calibration is the backbone step necessary in the unbiased evaluation of candidate oils for oil quality specifications.
Technical Paper

The Single Technology Matrix Process For Base Oil Interchange

2002-10-21
2002-01-2676
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology engine oils. This process has several advantages including the public display of data and a consensus evaluation of the submitted data. The process also has several limitations including timeliness of the consensus process, and the applicability and flexibility of an all-encompassing, industry-wide guideline. An enhancement to the all-encompassing, industry-wide consensus process is the Single Technology Matrix (STM). The idea behind this approach is to use sufficient data from a single technology to develop and use BOI for that specific technology. The advantages of the STM include improved technical merit, timeliness and flexibility in establishing BOI.
Technical Paper

Use of Virtual Tests in Establishing BOI/VGRA

2002-10-21
2002-01-2675
The Engine Oil Industry Base Oil Interchange (BOI) and Viscosity Grade Read Across (VGRA) guidelines developed by the American Petroleum Institute (API) provide a means to significantly reduce the time to market for current technology oils. The guidelines also allow conversion of a fraction of the millions of dollars spent each year on engine testing in pursuit of API engine oil licensing into research testing and the development of fundamental knowledge. In the past, guidelines have been developed based upon a general assessment of minimal engine test data. Recently, however, regression models have been used to assess Base Oil and Viscosity Grade effects. The use of statistical regression models and Virtual Tests in determining effects to establish BOI and VGRA has several advantages. These advantages, demonstrated through an example and a case study, include volume of data and breadth of data.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
Technical Paper

The Virtual Engine Test

2001-05-07
2001-01-1905
In API engine oil licensing, a candidate oil must meet the performance requirements of category defined engine tests. The reason for the engine tests is to assess the capability of the candidate oil in field performance. Unfortunately, due to the time consuming and expensive nature of most engine tests, a candidate oil is typically run only once or twice in an attempt to meet the performance requirements. Given that the results from most engine tests have large amounts of variability, the assessment of the candidate oil in several tests, although adequate, is obviously not perfect or inexpensive. The Virtual Engine Test is a process in which the time and expense of category defined engine tests may be reduced while maintaining, or even improving, the assessment of the candidate oil capability.
Technical Paper

Unbiased Engine Test Evaluation

2000-06-19
2000-01-1960
In API engine oil licensing, candidate oils must meet the performance requirements of category defined engine tests. While API category engine tests are developed to target a theoretical performance standard, it is rare that the cost to test and approve oils is understood. Given that engine tests are an integral part of oil evaluation, understanding of engine test value is necessary. Therefore, measurements of value are presented as Unbiased Engine Test Evaluation (UETE). UETE evaluates an engine test's draw on time and money resources by estimating the average number of tests required before a candidate oil will pass the category defined engine tests. A pilot study using the API CH-4 Category is presented.
X