Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

A COMPARISON OF EXPERIMENTAL AND ANALYTICAL STEADY STATE INTAKE PORT FLOW DATA USING DIGITAL PHYSICS

1999-03-01
1999-01-1183
A steady-state flowbench measures the mass and angular momentum flux (swirl and tumble) for a given cylinder head intake port design over varying valve lifts and pressure drops. From these two measurements, enhancements in volumetric efficiency and burnrate can be determined. This methodology, however, requires the production and experimental testing of multiple cylinder head castings or soft-prototypes. To help reduce the number of hardware design iterations, an analytical methodology has been developed which uses a new computational fluid dynamics (CFD) simulation tools called PowerFLOW. From a solid model of the cylinder head, PowerFLOW uses automeshing which produces a 10 million Cartesian volume mesh in 4 CPU hrs. The lattice Boltzmann technique used by PowerFLOW is inherently parallel resulting in steady-state results on this mesh in 36 CPU hrs. This paper present a comparison of numerically obtained mass flow rates from PowerFLOW to experimental flowbench data.
Technical Paper

Augmented Reality for Improved Dealership User Experience

2017-03-28
2017-01-0278
The potential for Augmented Reality (AR) spans many domains. Among other applications, AR can improve the discovery and learning experience for users inspecting a particular item. This paper discusses the use of AR in the automotive context; particularly, on improving the user experience in a dealership show room. Visual augmentation, through a tablet computer or glasses allows users to take part in a self-guided tour in learning about the various features, details, and options associated with a vehicle. The same approach can be applied to other learning scenarios, such as training and maintenance assistance. We evaluated a set of AR Glasses and a general purpose tablet. A table-top showroom was developed demonstrating what the actual user experience would be like for a self-guided dealership tour using natural markers and three-dimensional content spatially registered to physical objects in the user’s field of view.
Technical Paper

Multi-Level Sensing and Situation Awareness Evaluation for Adaptive Collision Countermeasure Activation

2002-06-03
2002-01-1883
Integrated, microprocessor-based, predictive crash systems provide opportunities for significant improvements in automobile safety. Consequently, next generation safety systems will incorporate various kinds of engineering concepts such as radar and laser-based sensors as well as vision-based electronic imaging systems that track the distance and closing velocity of objects detected to be on a potential collision path with a vehicle. A discussion on the synergies obtained from the integration of sensor systems for enhanced performance of safety products is presented. A multi-level situation awareness approach to assess the potential for imminent collision, and activate safety actuator systems to meet the challenges of improved safety, is presented.
Technical Paper

Obstacle State Estimation For Imminent Crash Prediction & Countermeasure Deployment Decision-Making

2003-06-23
2003-01-2261
Predictive crash sensing and deployment control of safety systems require reliable and accurate kinematic information about potential obstacles in the host vehicle environment. The projected trajectories of obstacles in the path of the vehicle assist in activation of safety systems either before, or just after collision for improved occupant protection. This paper presents an analysis of filtering and estimation techniques applied to imminent crash conditions. Optimization of design criteria to achieve required response performance, and noise minimization, are evaluated based on the safety system to be activated. The predicted target information is applied in the coordinated deployment of injury mitigation safety systems.
Technical Paper

Wind Noise Spectral Predictions Using a Lattice-Based Method

1999-05-17
1999-01-1810
The current ability of the Virtual Aerodynamic/ Aeroacoustic Wind Tunnel to predict interior vehicle sound pressure levels is demonstrated using an automobile model which has variable windshield angles. This prediction method uses time-averaged flow solutions from a lattice gas CFD code coupled with wave number-frequency spectra for the various flow regimes to calculate the side window vibration from which the sound pressure level spectrum at the driver's ear is determined. These predictions are compared to experimental wind tunnel data. The results demonstrate the ability of this methodology to correctly predict wind noise spectral trends as well as the overall loudness at the driver's ear. A more sophisticated simulation method employing the same lattice gas code is investigated for prediction of the time-accurate flow field necessary to compute the actual side glass pressure spectra.
X