Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Journal Article

Comparison of On-Road Highway Fuel Economy and All-Electric Range to Label Values: Are the Current Label Procedures Appropriate for Battery Electric Vehicles?

2023-04-11
2023-01-0349
As consumers transition from internal combustion engine (ICE)-powered vehicles to battery electric vehicles (BEV), they will expect the same fuel economy label-to-on-road correlation. Current labeling procedures for BEVs allow a 0.7 or higher multiplier to be applied to the unadjusted fuel economy and range values. For ICE-powered vehicles, the adjustment factor decreases with increasing unadjusted fuel economy and can be lower than 0.7. To better inform consumers, starting in 2016, Car and Driver added an on-road highway fuel-economy test, conducted at 120 kph (75 mph), that augments the performance metrics that it's been measuring since the 1950s. For electric vehicles, testing includes an evaluation of the all-electric range. The on-road test results were aligned with the certification information for each vehicle model including unadjusted and label fuel economy and range, road load force coefficients, and labeling options.
Journal Article

Decomposing Fuel Economy and Greenhouse Gas Regulatory Standards in the Energy Conversion Efficiency and Tractive Energy Domain

2017-03-28
2017-01-0897
The three foundational elements that determine mobile source energy use and tailpipe carbon dioxide (CO2) emissions are the tractive energy requirements of the vehicle, the energy conversion efficiency of the propulsion system, and the energy source. The tractive energy requirements are determined by the vehicle's mass, aerodynamic drag, tire rolling resistance, and parasitic drag. The energy conversion efficiency of the propulsion system is dictated by the tractive efficiency, non-tractive energy use, kinetic energy recovery, and parasitic losses. The energy source determines the mobile source CO2 emissions. For current vehicles, tractive energy requirements and overall energy conversion efficiency are readily available from the decomposition of test data. For future applications, plausible levels of mass reduction, aerodynamic drag improvements, and tire rolling resistance can be transposed into the tractive energy domain.
Technical Paper

Vehicle System Energy Analysis Methodology and Tool for Determining Vehicle Subsystem Energy Supply and Demand

2007-04-16
2007-01-0398
A greater understanding of where fuel energy is being demanded from a vehicle system standpoint is necessary for developing more fuel efficient vehicles. This paper presents an overview of the development and application of a vehicle energy analysis methodology and a MATLAB®/Simulink® based tool that uses empirical data and first principles to identify vehicle subsystem energy supply and demand. An accurate analysis requires the tool to be populated with chassis dynamometer drive cycle data as well as vehicle and component information. The tool can be used to investigate vehicle system energy requirements, prevailing fuel economy factors, and incremental hypothetical fuel saving scenarios that could not otherwise be measured due to inherent test-to-test variability.
Technical Paper

The New DaimlerChrysler Corporation 5.7L HEMI® V8 Engine

2002-10-21
2002-01-2815
For the 2003 model year DaimlerChrysler Corporation (DCC) will introduce an all-new 5.7L V8 truck engine manufactured at the new Saltillo II Engine Plant (SEPII) in Saltillo, Mexico. The product will debut in the new RAM series of pick-up trucks and marks the return of the hemispherical combustion chamber architecture. This paper covers the engine design features, simulation methods, development, and manufacturing processes. Also reviewed are the project objectives and the organizational processes used to manage and deliver the program.
Technical Paper

A Comparison of Conversion Efficiency and Flow Restriction Performance of Ceramic and Metallic Catalyst Substrates

2001-03-05
2001-01-0926
Catalyst systems utilizing ceramic and metallic substrates were compared to assess the influence of various substrate parameters on the exhaust gas conversion efficiency and flow restriction. In particular, the substrate surface area, substrate specific heat capacity, and substrate volume were all evaluated for their importance in estimating the conversion efficiency of the catalyst system. Additionally, substrate open frontal area and cell hydraulic diameter were compared against exhaust restriction performance.
X