Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

The Effect of the Head-to-Head Restraint Distance on Occupant Kinematics during Low-Speed Rear-End Crashes

2018-04-03
2018-01-0537
The longitudinal motion of the head, thorax and lumbar spine of two test subjects was measured in low-speed rear-end collisions in order to understand the effect of the head-to-head restraint distance (backset) on the occupant kinematics. The two test subjects were exposed to three rear-end impacts at two crash severities, nominal changes in velocity (ΔV) of 1.11 (low ΔV) and 2.22 m/s (high ΔV). The backset was hypothesized to be an independent variable that would affect the head and neck motion and was set at 0, 5 or 10 cm. The x and z-axis accelerations of the impacted vehicle and the anatomical x and z-axis accelerations of each test subjects’ upper thorax and L5-S1 region were measured and then transformed to an earth-based coordinate system. Head accelerations were measured at the mouth and these accelerations were transformed to an earth-based coordinate system at the head center of gravity (CG).
Technical Paper

Measurement of Tolerable and Non-Injurious Levels of Back-to-Front Whole Body Accelerations

2014-04-01
2014-01-0492
There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured.
Journal Article

Reconstruction of Low-Speed Crashes using the Quasi-Static Force vs. Deformation Characteristics of the Bumpers Involved in the Crashes

2012-04-16
2012-01-0598
The purpose of this study was to determine if quasi-static (QS) bumper force-deformation (F-D) data could be used in a low-speed bumper-to-bumper simulation model (1) in order to reconstruct low-speed crashes. In the simulation model, the bumpers that make contact in a crash are treated as a system. A bumper system is defined as the two bumpers that interact in a crash positioned in their orientation at the time of the crash. A device was built that quasi-statically crushes the bumpers of a bumper system into each other and measures the compression force and the deformation of the bumper system. Three bumper systems were evaluated. Two QS F-D measurements were performed for each bumper system in order to demonstrate the repeatability of the QS F-D measurement. These measurements had a compression phase and a rebound phase. A series of crash tests were performed using each bumper system.
Journal Article

Simulation Model for Low-Speed Bumper-to-Bumper Crashes

2010-04-12
2010-01-0051
The purpose of this study was to develop a numerical analytical model of collinear low-speed bumper-to-bumper crashes and use the model to perform parametric studies of low-speed crashes and to estimate the severity of low-speed crashes that have already occurred. The model treats the car body as a rigid structure and the bumper as a deformable structure attached to the vehicle. The theory used in the model is based on Newton's Laws. The model uses an Impact Force-Deformation (IF-D) function to determine the impact force for a given amount of crush. The IF-D function used in the simulation of a crash that has already occurred can be theoretical or based on the measured force-deflection characteristics of the bumpers of the vehicles that were involved in the actual crash. The restitution of the bumpers is accounted for in a simulated crash through the rebound characteristics of the bumper system in the IF-D function.
X