Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Journal Article

Meeting Nonroad Final Tier 4 Emissions on a 4045 John Deere Engine Using A Fuel Reformer and LNT System with An Optional SCR Showing Transparent Vehicle Operation, Vehicle Packaging and Compliance to End-of-Life Emissions

2011-09-13
2011-01-2206
The nonroad Final Tier 4 US EPA emission standards require 88% reduction in NOx emission from the Interim Tier 4 standards. It is necessary to utilize aftertreatment technologies to achieve the required NOx reduction. The development of a fuel reformer, lean NOx trap (LNT) and optional selective catalytic reactor (SCR) on a John Deere 4045 nonroad engine is described in this paper. The paper discusses aftertreatment system performance, catalyst formulations and system controls of a fuel vaporizer, fuel reformer, LNT and SCR system designed to meet the nonroad Final Tier 4 emission standards. The 4045 John Deere engine was calibrated and integrated with the aftertreatment system. The system performance was characterized in an engine dynamometer performance test cell, durability test cell and on a vehicle. The catalyst performance was evaluated using aged catalysts and a detailed description of the LNT, DPF and SCR catalysts is provided.
Technical Paper

Investigation of Effects of Piston Bowl and Fuel Injector Offsets on Combustion and Emissions in D.I. Diesel Engines

2002-05-06
2002-01-1748
The effects of piston bowl and fuel injector offsets on combustion and emissions in a D.I. diesel engine have been investigated by using a KIVA CFD code. In this investigation, modeling combustion and emissions in the diesel engine at different regimes is performed, including the model of the single spray sector without piston bowl and fuel injector offsets, the model of the full cylinder of 360 degrees without piston bowl and fuel injector offsets, and the model of the full cylinder of 360 degrees with both a piston bowl offset and a fuel injector offset, respectively. In addition, the corresponding experiments are conducted to validate the modeling. The fuel spray patterns are compared for different models. The cylinder pressure, the heat release rate, and the emissions of NOx and soot are examined.
Technical Paper

Development of Truck Engine Technologies for Use with Fischer-Tropsch Fuels

2001-09-24
2001-01-3520
The Fischer-Tropsch (FT) process can be used to synthesize diesel fuels from a variety of energy sources, including coal, natural gas and biomass. Diesel fuels produced from the FT process are essentially sulfur-free, have very low aromatic content, and have excellent ignition characteristics. Because of these favorable attributes, FT diesel fuels may offer environmental benefits over transportation fuels derived from crude oil. Previous tests have shown that FT diesel fuel can be used in unmodified engines and have been shown to lower regulated emissions. Whereas exhaust emissions reductions from these previous studies have been impressive, this paper demonstrates that far greater exhaust emissions reductions are possible if the diesel engine is optimized to exploit the properties of the FT fuels. A Power Stroke 7.3 liter turbocharged diesel engine has been modified for use with FT diesel.
Technical Paper

Validation and Use of SIMULINK Integrated, High Fidelity, Engine-In-Vehicle Simulation of the International Class VI Truck

2000-03-06
2000-01-0288
This work presents the development, validation and use of a SIMULINK integrated vehicle system simulation composed of engine, driveline and vehicle dynamics modules. The engine model links the appropriate number of single-cylinder modules, featuring thermodynamic models of the in-cylinder processes with transient capabilities to ensure high fidelity predictions. A detailed fuel injection control module is also included. The engine is coupled to the driveline, which consists of the torque converter, transmission, differential and prop shaft and drive shafts. An enhanced version of the point mass model is used to account for vehicle dynamics in the longitudinal and heave directions. A vehicle speed controller replaces the operator and allows the feed-forward simulation to follow a prescribed vehicle speed schedule.
X