Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Controlling Cyclic Combustion Variations in Lean-Fueled Spark-Ignition Engines

2001-03-05
2001-01-0257
This paper describes the reduction of cyclic combustion variations in spark-ignited engines, especially under idle conditions in which the air-fuel mixture is lean of stoichiometry. Under such conditions, the combination of residual cylinder gas and parametric variations (such as variations in fuel preparation) gives rise to significant combustion instabilities that may lead to customer-perceived engine roughness and transient emissions spikes. Such combustion instabilities may preclude operation at air-fuel ratios that would otherwise be advantageous for fuel economy and emissions. This approach exploits the recognition that a component of the observed combustion instability results from a noise-driven, nonlinear deterministic mechanism that can be actively stabilized by small feedback control actions which result in little if any additional use of fuel.
Journal Article

Methods of Measuring Regenerative Braking Efficiency in a Test Cycle

2017-03-28
2017-01-1168
In Hybrid Electric Vehicles, Regenerative Braking is an essential function to convert vehicle kinetic energy into electrical energy, which charges the battery during a braking event to make a portion of captured kinetic energy available for use later. In comparison, conventional vehicles use friction brakes only and kinetic energy is dissipated as heat and not made available for later use. This paper introduces methods of evaluating Regenerative Braking Efficiency, including multiple efficiency definitions that lead to different attributes. The paper proposes regenerative brake event definitions during the FTP cycle and how they are used for control strategy and calibration updates. Also, we apply the efficiency metrics to four different vehicles from four automotive manufacturers for comparison. The paper presents a sample comparison result.
X