Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Effect of the Head-to-Head Restraint Distance on Occupant Kinematics during Low-Speed Rear-End Crashes

2018-04-03
2018-01-0537
The longitudinal motion of the head, thorax and lumbar spine of two test subjects was measured in low-speed rear-end collisions in order to understand the effect of the head-to-head restraint distance (backset) on the occupant kinematics. The two test subjects were exposed to three rear-end impacts at two crash severities, nominal changes in velocity (ΔV) of 1.11 (low ΔV) and 2.22 m/s (high ΔV). The backset was hypothesized to be an independent variable that would affect the head and neck motion and was set at 0, 5 or 10 cm. The x and z-axis accelerations of the impacted vehicle and the anatomical x and z-axis accelerations of each test subjects’ upper thorax and L5-S1 region were measured and then transformed to an earth-based coordinate system. Head accelerations were measured at the mouth and these accelerations were transformed to an earth-based coordinate system at the head center of gravity (CG).
Journal Article

Characterization of Force Deflection Properties for Vehicular Bumper-to-Bumper Interactions

2014-04-01
2014-01-1991
This is the complete manuscript and replacement for SAE paper 2014-01-0482, which has been retracted due to incomplete content. This paper reports on 76 quasi-static tests conducted to investigate the behavior of road vehicle bumper systems. The tests are a quasi-static replication of real world low speed collisions. The tests represented front to rear impacts between various vehicles. Force and deflection were captured in order to quantify the stiffness characteristics of the bumper-to-bumper system. A specialized test apparatus was constructed to position and load bumper systems into each other. The purpose was to replicate or exceed damage that occurred in actual collisions. The fixture is capable of positioning the bumpers in various orientations and generates forces up to 50 kips. Various bumper-to-bumper alignments were tested including full overlap, lateral offset, and override/underride configurations.
Technical Paper

Measurement of Tolerable and Non-Injurious Levels of Back-to-Front Whole Body Accelerations

2014-04-01
2014-01-0492
There is a paucity of recent data quantifying the injury risk of forces and accelerations that act on the whole body in a back-to-front direction. The purpose of this study was to quantify the level of back-to-front accelerations that volunteers felt were tolerable and non-injurious. Instrumented volunteers were dropped supine onto a mattress, and their accelerations during the impact with the mattress were measured. Accelerometers were located on the head, upper thoracic and lower lumbar regions. Drop heights started at 0.6 m (2 ft) and progressed upward as high as 1.8 m (6 ft) based on the test subjects' consent. The test panel was comprised of male and female subjects whose ages ranged from 25 to 63 years of age and whose masses ranged from 62 to 130 kg (136 to 286 lb). Peak head, upper thoracic and lower lumbar accelerations of 25.9 g, 29.4 g and 39.6 g were measured.
Journal Article

Comparison of Quasistatic Bumper Testing and Dynamic Full Vehicle Testing for Reconstructing Low Speed Collisions

2014-04-01
2014-01-0481
It has been proposed that low speed collisions in which the damage is isolated to the bumper systems can be reconstructed using data from customized quasistatic testing of the bumper systems of the involved vehicles. In this study, 10 quasistatic bumper tests were conducted on 7 vehicle pairs involved in front-to-rear collisions. The data from the quasistatic bumper tests were used to predict peak bumper force, vehicle accelerations, velocity changes, dynamic combined crush, restitution, and crash pulse time for a given impact velocity. These predictions were compared to the results measured by vehicle accelerometers in 12 dynamic crash tests at impact velocities of 2 - 10 mph. The average differences between the predictions using the quasistatic bumper data and the dynamic crash test accelerometer data were within 5% for bumper force, peak acceleration, and velocity change, indicating that the quasistatic bumper testing method had no systematic bias compared to dynamic crash testing.
Journal Article

Passenger Car Response to Interaction with Tractor-Trailer Steer Tire Lugs

2014-04-01
2014-01-0475
Performing a reconstruction of sideswipe interactions is difficult due to the lack of permanent crush sustained by the vehicles involved. Previous studies have provided insight into the forces involved in creating various types of damage for vehicle-to-vehicle interactions during a sideswipe interaction. However, these data may not be applicable to the interaction that occurs when a tractor-trailer steer tire is involved. As demonstrated in previous studies, steer tire interaction produces a unique pattern of markings on the struck vehicle by the protruding lugs (wheel stud) of the steer tire. These studies have demonstrated that the pattern of cycloidal marks created by the wheel lugs can be used to calculate the relative speeds of the vehicles. While this is helpful in understanding the relative motion of the vehicles, it does not provide information regarding the forces applied at the point of contact.
Journal Article

Reconstruction of Low-Speed Crashes using the Quasi-Static Force vs. Deformation Characteristics of the Bumpers Involved in the Crashes

2012-04-16
2012-01-0598
The purpose of this study was to determine if quasi-static (QS) bumper force-deformation (F-D) data could be used in a low-speed bumper-to-bumper simulation model (1) in order to reconstruct low-speed crashes. In the simulation model, the bumpers that make contact in a crash are treated as a system. A bumper system is defined as the two bumpers that interact in a crash positioned in their orientation at the time of the crash. A device was built that quasi-statically crushes the bumpers of a bumper system into each other and measures the compression force and the deformation of the bumper system. Three bumper systems were evaluated. Two QS F-D measurements were performed for each bumper system in order to demonstrate the repeatability of the QS F-D measurement. These measurements had a compression phase and a rebound phase. A series of crash tests were performed using each bumper system.
Technical Paper

Evaluation of Thoracic and Lumbar Accelerations of Volunteers in Vertical and Horizontal Loading Scenarios

2010-04-12
2010-01-0146
There are exposures of the body to accelerations in the lumbar and thoracic regions on a regular basis with everyday activities and exercises. The purpose of this study was to evaluate the response of the thoracic and lumbar regions in human volunteers subjected to vigorous activities. A total of 181 tests include twenty volunteers subjected to four test scenarios: “plopping” down in a seat, a vertical jump, a vertical drop while in a supine position, and a vertical drop while seated upright in a swing. Each of the latter three activities included three severity levels with drop heights ranging from 25 mm to 900 mm. Volunteers selected represent the anthropometry of the general population including males and females at a wide range of weights (54 to 99 kg), heights (150 to 191 cm), and ages (26 to 58 years old). Instrumentation for each volunteer included tri-axial accelerometers attached to custom-fit mounts that were secured around the lumbar and upper thoracic regions.
Technical Paper

Validation and Application of a Methodology to Calculate Head Accelerations and Neck Loading in Soccer Ball Impacts

2009-04-20
2009-01-0251
Calculating head accelerations and neck loading is essential for understanding and predicting head and neck injury. Most of the desired information cannot be directly measured in experiments with human volunteers. Achieving accurate results after applying the necessary transformations from remote measurements is difficult, particularly in the case of a head impact. The objective of this study was to develop a methodology for accurately calculating the accelerations at the center of gravity of the head and the loads and moments at the occipital condyles. To validate this methodology in a challenging test condition, twenty (20) human volunteers and a Hybrid III dummy were subjected to forehead impacts from a soccer ball traveling horizontally at speeds up to 11.5 m/s. The human subjects and the Hybrid III were instrumented with linear accelerometers and an angular rate sensor inside the mouth.
Technical Paper

Development of an Impact Pendulum for Use in Collinear, Low-Velocity Front-to-Rear Crash Tests

2006-04-03
2006-01-1401
The costs of low-velocity, front-to-rear crash tests include the bullet (striking) and target (struck) cars. Analyses of this type of tests led us to conclude that it may be technically feasible and economically advantageous to replace the bullet car with a simplified mechanical device. A bifilar pendulum with an impact face consisting of a mass-spring-damper system was designed to simulate the bullet car in car-to-car, collinear, low-velocity (delta-v <= 8 km/h) front-to-rear tests. The elements of the pendulum face were evaluated dynamically and quasi-statically. Also, car-to-car tests were initially performed with stationary target cars (brakes off). Repair or replacement of the minor damage observed in the cars was accomplished as needed. Tests were subsequently performed with the pendulum striking the same target cars and approximating the bullet cars' impact energies. The pendulum, bullet, and target cars were instrumented with translational acceleration and velocity sensors.
Technical Paper

Vehicle Dynamics in Non-Collinear Low-Velocity, Rear End Collisions

2004-03-08
2004-01-1193
The vehicle dynamics of non-collinear, low-velocity front-to- rear collisions have received little formal study. The twenty-three angled collisions conducted for this project revealed significant vehicle dynamic differences when compared with similar-energy collinear rear-end collisions. Two recent model year vehicles were used to conduct non-collinear collisions at a nominal 12 km/h impact velocity. The pre-collision angles between the test vehicles were established so that the striking vehicle's line of action through its CG was either 15 or 30 degrees from the stationary struck vehicle's initial heading. Both vehicles had accelerometers at their CG's measuring longitudinal and lateral accelerations. The struck vehicle also had sensors to measure CG vertical accelerations, yaw rates, and longitudinal and lateral velocities. Film from three high-speed 16-mm [film] cameras was digitized and analyzed for each collision. The ΔV at various points within the struck vehicle was studied.
X