Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Stop-Start System with Compact Motor Generator and Newly Developed Direct Injection Gasoline Engine

2012-04-16
2012-01-0410
Existing stop-start systems have several concerns such as take-off response, engine restart noise, high cost and system complexity. This paper describes a newly developed stop-start system that overcomes these concerns and can be used on high-volume production models at an affordable cost. The new system is based on a compact motor generator that allows cranking at restart and also functions as an alternator following engine start. A belt-driven system is used for restarting the engine to avoid noise from gear insertion and engagement. The motor generator is capable of high-speed operation for reducing engine startup time. Starting control has also been improved to achieve the shortest possible startup time in combination with a newly developed direct injection engine. Shortening the startup time tends to impair engine smoothness at restart. However, this concern has been resolved through cooperative control with the motor generator.
Technical Paper

Development of Third Generation of Gasoline P-ZEV Technology

2003-03-03
2003-01-0816
This paper describes the third generation of the partial zero emission vehicle (P-ZEV) technology originally adopted on the Nissan Sentra CA sold in California. The 2000 Nissan Sentra CA became the world's first gasoline-fueled car to qualify for P-ZEV credits from the California Air Resources Board (CARB). The third-generation P-ZEV system has been substantially reduced in size and cost, compared with the Sentra CA system, enabling it to be used on high-volume models. This system complies with the P-ZEV requirements, including those for zero evaporative emissions and Onboard Diagnostics II (OBD-II). To achieve a more compact and lower-cost system, an ultra-thin-walled catalyst substrate, the world's first to attain a 1.8-mil wall thickness, has been adopted along with catalysts that display excellent low-temperature activity. As a result, low-temperature catalyst activity has been significantly improved.
Technical Paper

Development of Thinnest Wall Catalyst Substrate

2002-03-04
2002-01-0358
The thinnest wall thickness of automotive catalyst substrates has previously been 30 μm for metal substrates and 50 μm for ceramic substrates. This paper describes a newly developed catalyst substrate that is the world's first to achieve 20-μm-thick cell walls. This catalyst substrate features low thermal capacity and low pressure loss. Generally, a thinner cell wall decreases substrate strength and heat shock resistance. However, the development of a “diffused junction method”, replacing the previous “wax bonding method”, and a small waved foil has overcome these problems. This diffused junction method made it possible to strengthen the contact points between the inner waved foil and the rolled foil compared with previous substrates. It was also found that heat shock resistance at high temperature can be much improved by applying a slight wave to the foil instead of using a plane foil.
Technical Paper

Development of Second Generation of Gasoline P-ZEV Technolgy

2001-03-05
2001-01-1310
This paper describes the second generation of the partial zero emission vehicle (P-ZEV) technology that was developed for use on the Nissan Sentra CA sedan sold in California.1,2 The second-generation engine has been adopted on a mass-produced model marketed in Japan. Besides continuing the super ultra low emission vehicle (SULEV) performance of the Sentra CA, the second-generation technology incorporates a compact, two-stage HC trap catalyst system. The system has been substantially reduced in size and cost as a result of improving the catalyst and the substrate and reducing the total catalyst volume by optimizing the control method. Moreover, the second-generation P-ZEV technology includes an electrically actuated continuously variable swirl control valve of the high-speed jet type, a high-response electrically actuated EGR valve and catalyst model control based on the use of an air-fuel ratio sensor.
Technical Paper

Nissan's Gasoline SULEV Technology

2000-04-02
2000-01-1583
A new gasoline-fueled Super Ultra Low Emissions Vehicle (SULEV) technology has been developed that meets the California Air Resources Board's (CARB) most stringent tailpipe emission levels and zero evaporative emissions, while fulfilling all On-Board Diagnostic II (OBD II) requirements. This paper will describe the various new technologies used in achieving the SULEV standards, such as the HC trap system with an ultra-thin wall substrate for the improvement of catalyst light-off time, and an electrically actuated swirl control valve for reducing cold-start emissions. In addition, a control approach to stabilizing NOx emissions will also be discussed.
Technical Paper

Development of New Technologies Targeting Zero Emissions for Gasoline Engines

2000-03-06
2000-01-0890
This paper describes new technologies for achieving exhaust emission levels much below the SULEV standards in California, which are the most stringent among the currently proposed regulations in the world. Catalyst light-off time, for example, has been significantly reduced through the adoption of a catalyst substrate with an ultra-thin wall thickness of 2 mil and a catalyst coating specifically designed for quicker light-off. A highly-efficient HC trap system has been realized by combining a two-stage HC trap design with an improved HC trap catalyst. The cold-start HC emission level has been greatly reduced by an electronically actuated swirl control valve with a high-speed starter. Further, an improved Air Fuel Ratio (AFR) control method has achieved much higher catalyst HC and NOx conversion efficiency.
Technical Paper

Engine-Out and Tail-Pipe Emission Reduction Technologies of V-6 LEVs

1998-02-23
980674
Compared with in-line 4-cylinder engines, V-6 engines show a slower rise in exhaust gas temperature, requiring a longer time for catalysts to become active, and they also emit higher levels of engine-out emissions. In this study, The combination of a new type of catalyst, and optimized ignition timing and air-fuel ratio control achieved quicker catalyst light-off. Additionally, engine-out emissions were substantially reduced by using a swirl control valve to strengthen in-cylinder gas flow, adopting electronically controlled exhaust gas recirculation (EGR), and reducing the crevice volume by decreasing the top land height of the pistons. A vehicle incorporating these emission reduction technologies reduced the emission level through the first phase of the Federal Test Procedure (FTP) by 60-70% compared with the Tier 1 vehicle.
Technical Paper

Technologies for Reducing Cold-Start Emissions of V6 ULEVs

1997-02-24
971022
New technologies are needed to reduce cold-start emissions in order to meet the more stringent regulations that will go into effect in Europe (EC2000 or EC2005) and in California (ULEV), especially for larger engines such as 6- and 8-cylinder units. One new technology in this regard is the electrically heated catalyst (EHC). However, the use of EHCs alone is not sufficient to achieve the necessary reduction in emissions. This paper discusses techniques for effectively combining the elements of an EHC system, including the introduction of secondary air into the exhaust, improved control of the air/fuel ratio, and an electric power supply method for EHCs. It is shown that it is more effective to promote exothermic reactions in the exhaust manifold than at the EHC. A suitable method for this purpose is to introduce secondary air into the exhaust near the exhaust valves.
Technical Paper

Development of Improved Metal-Supported Catalyst

1989-02-01
890188
A compact, high-performance and durable metal-supported catalyst has been developed by using the properties of the metal support effectively. The advantages of the metal-surpported catalyst against the ceramic-supported one are higher geometrical surface area, higher heat conductivity and thinner wall thickness. Higher geometlical surface area and higher heat conductivity lead to higher conversion efficiency after durability test and it allows reduction in catalyst volume. And the thinner wall thickness lowers gas flow resistance. But also, the metal-supported catalyst has the disadvantage of larger heat expansion and it requires special structure and material.
X