Refine Your Search

Search Results

Author:
Viewing 1 to 7 of 7
Technical Paper

A Matrix Infrared Sensor System for Improving Thermal Comfort in Passenger Compartments

2008-04-14
2008-01-0835
Customers tend to require more comfortable climate control in vehicles. This paper is concern with a new infrared sensor that detects surface temperature at six separate locations, and a climate control system that incorporates the sensor. In a conventional system using an air temperature sensor and solar radiation sensor, climate conditions are usually controlled according to the thermal load. It is believed that more comfortable climate control can be realized by using an infrared sensor to detect passengers' surface temperature. The sensor consists of a lens, an IC with six thermopiles, a circuit and a case, and has been improved to detect in-cabin surface temperature accurately even under severe environmental conditions. The HVAC system controls the outlet air temperature and mode individually for each seat according to detected temperatures.
Journal Article

New Evaluation Method of Transient and Non-Uniform Environment in a Passenger Compartment

2012-04-16
2012-01-0633
Development of new passenger-car climate control systems that contribute to improved comfort and decreased fuel consumption requires quantitative evaluations of thermal sensation and comfort. Therefore, a new evaluation method of the transient and non-uniform passenger-compartment thermal environment has been developed. Vehicle occupant's local thermal sensations are evaluated by using the local standard new effective temperature (SET*) that is calculated using a human thermoregulation model. The occupant's whole-body thermal comfort is then evaluated by local thermal sensation. The theory of the method and some example application results are introduced in this paper.
Technical Paper

Numerical Analysis of Transient Defogging Pattern on an Automobile

2002-03-04
2002-01-0223
CFD has been actively applied for developing automotive air conditioning system in recent years. In addition to automobile interior air conditioning, an automotive air conditioning system has the important function of providing a clear field of view by defogging (or defrosting) the windows. Although many CFD application methods have been reported for estimating windshield defogging pattern, few examples of simulation show accurate result of transient clearing pattern. To predict transient clearing pattern accurately, using a correct model of window glass fogging-clearing is important. As the result of our observation on fogged glass surfaces, fogging was found out to be an aggregation of water drops, so that new dropwise condensation-evaporation model was developed and applied. Transient defogging patterns were simulated with the CFD code including this model, and accuracy was verified on a simplified compartment model and actual automobiles.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

The Humidity Control System Applied to Reduce Ventilation Heat Loss of HVAC Systems

2011-04-12
2011-01-0134
Vehicles have been more required to save energy against the background of the tendency of ecology. As the result of improving efficiency of internal combustion engines and adoption of electric power train, heat loss from engine coolant, which is used to heat the cabin, decreases and consequently additional energy may be consumed to maintain thermal comfort in the passenger compartment in winter. This paper is concerned with the humidity control system that realizes reduction of ventilation heat loss by controlling recirculation rate of the HVAC system by using highly accurate humidity sensor to evaluate risk of fogging on the windshield. As the results of the control, fuel consumption of hybrid vehicles decreases and maximum range of electric vehicles increases.
Journal Article

Ventilation Characteristics of Modeled Compact Car Part 2 Estimation of Local Ventilation Efficiency and Inhaled Air Quality

2008-04-14
2008-01-0731
In order to evaluate the ventilation characteristics of car interior, a model experiment was performed. Part 1 deals with the air flow properties in a half-scale car model. In this paper, a trace gas experimental method equipped with Flame Ionization Detector (FID) systems is introduced to examine the local ventilation efficiency and inhaled air quality in the car, which was ventilated at a flow rate of 100 m3/h and kept in an isothermal environment of 28°C in the experiment. Here, ventilation efficiency was evaluated by means of the Scales for Ventilation Efficiencies (SVEs), and inhaled air quality in terms of the influences of passive smoke and foot odor was evaluated by means of the Contribution Ratio of Pollution source 1 (CRP1). Therefore, calculation methods using trace gas concentration values were suggested for these indices, which were proposed based on the Computational Fluid Dynamics (CFD) technique.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 5 - Scaled Model Experiment for Heat Transfer Characteristics

2012-04-16
2012-01-0634
Accuracy of numerical simulation has to be evaluated through the actual phenomenon such as experiment or measurement and then it can be employed to design the air-conditioning system of car cabin at the development phase. Scaled model of vehicle cabin was created by the Society of Automotive Engineers of Japan (JSAE) and the experiment was performed to obtain the detailed information of heat transfer characteristics inside the cabin under the non-isothermal condition. The sheet heaters were put to the inner surface of the acrylic cabin and they supplied certain amount of heat. The temperatures of inner and outer surface and air were measured to evaluate the thermal environment of the cabin. The results lead to enhancement of the data of the standard model of the cabin.
X