Refine Your Search

Topic

Search Results

Author:
Technical Paper

Gantry Horizontal Slug Riveting System

2024-03-05
2024-01-1924
Previously given Paper 09ATC-0232 delivered at the SAE Aerotech conference in Seattle in 2009 reports on the E6000 machine installing slug rivets with the EMR. Paper 2015-01-2491given at the SAE conference in Seattle in 2015 reports on index head rivets being installed with screw driven squeeze process. This paper reports on the screw driven squeeze process installing unheaded slug rivet which is a more complex process. We also report on improvements to the fixture automation.
Technical Paper

Central Control of an Automated Riveting Machine and Robot Part Position with a Single CNC

2022-03-08
2022-01-0014
There exists a demand in the aerospace industry for highly configurable and flexible automated riveting cells to manufacture small to medium sized panels of complex geometries. To meet this demand Electroimpact has developed a manufacturing system consisting of a stationary Electro-squeeze C-frame riveter, coupled with a robot part positioner to present the component to the process head tool point. The C-frame can install a wide range of aerospace rivets and perform specialist functions including backside countersinking operations, giving potential for double flush fastening. The geometric limitations and high implementation costs of large cartesian based positioning barges or fixed jig tooling and moving gantry riveters are avoided when exchanged for a robot part positioner.
Technical Paper

Narrow Fixture Improves One-Up Panel Assembly

2022-03-08
2022-01-0015
The use of a narrow profile posts or Skinny Fixture increases build speed and flexibility while improving quality of aluminum aircraft panels fastened in one-up assembly cells. Aluminum aircraft panels are made up of an outer skin and a series of stringers. The components must be held in accurate relative positions while preliminary fasteners are installed. By using narrow fixture posts in conjunction with deep drop stringer side machine tools, the fastening machine can apply fasteners at tighter initial spacing. The spacing is gained by providing clearances that allows the centerline of the fastening system to work closer to the post than previously achieved with deep fixture posts and short stringer side tooling. At one time the standard process was to hold the parts in manual tack cells and after tacking the panels are moved to a separate automated fastening cell. One-up assembly fixtures improve the process by reducing manual processes while minimizing component handling.
Technical Paper

Flexible All Electric Riveter

2019-03-19
2019-01-1333
A new style of all electric riveting machine has been developed with saddle hoppers that does not require a track between the hoppers and the fingers. This enables feeding square rivets without difficulty. The upper ram has a bent knee which allows the rivet fingers to be brought up to the hopper and rotated 30 degrees rather than the rivet sliding down a track, which minimizes jamming that occurs with some fasteners in the track, and increases reliability. A mixture of fasteners can be loaded side by side in the hoppers, increasing flexibility. The rivet feeding is accomplished by bringing the rivet fingers to the hopper. The machine uses a power drawbar to change out different rivet fingers. A small industrial robot is incorporated into the machine to complete different sized coupons and also complete small assemblies. In larger machines larger robots or CNC positioners can be used to scale up the use of the machine.
Technical Paper

EMR with High Reliability for Retrofit of E4100 Riveting Gantry Machines

2017-09-19
2017-01-2099
Electroimpact has retrofitted two E4100 riveting gantry machines and two more are in process. These machines use the EMR (Electromagnetic Riveter) riveting process for the installation of slug rivets. We have improved the skin side EMR to provide fast and reliable results: reliability improved by eliminating a weekly shutdown of the machine. In paper 2015-01-2515 we showed the slug rivet injector using a Synchronized Parallel Gripper that provides good results over multiple rivet diameters. This injector is mounted to the skin side EMR so that the rivet injection can be done at any position of the shuttle table. The EMR is a challenging application for the fingers due to shock and vibration. In previous designs, fingers would occasionally be thrown out of the slots. To provide reliable results we redesigned the fingers retainer to capture the finger in a slotted plastic block which slides along the outside diameter of the driver bearing.
Technical Paper

Magnetic Safety Base for Automated Riveting and Bolting

2016-09-27
2016-01-2087
There is an ever-present risk for the lower ram on a riveting machine to suffer a damaging collision with aircraft parts during automated fastening processes. The risk intensifies when part frame geometry is complex and fastener locations are close to part features. The lower anvil must be led through an obstructive environment, and there is need for crash protection during side-to-side and lowering motion. An additional requirement is stripping bolt collars using the downward motion of the lower ram, which can require as much as 2500 pounds of pulling force. The retention force on the lower anvil would therefore need to be in excess of 2500 pounds. To accomplish this a CNC controlled electromagnetic interface was developed, capable of pulling with 0-3400 pounds. This electromagnetic safety base releases when impact occurs from the sides or during downward motion (5 sided crash protection), and it retains all riveting and bolting functionality.
Technical Paper

Use of Synchronized Parallel Grippers in Fastener Injection Systems

2015-09-15
2015-01-2515
A new style of rivet injector is in production use on a variety of fastening machines used by major aircraft manufacturers. In this injector the opposing sides of the rivet guide blocks are attached to the arms of a parallel gripper. We have implemented the parallel gripper in both vertical axis and horizontal axis riveting applications. It is equally effective in both orientations. We have implemented the parallel gripper rivet injector on headed rivets, threaded bolts, ribbed swage bolts and unheaded (slug) rivets.
Technical Paper

Riveting Thin A320 Stacks

2014-09-16
2014-01-2264
The E7000 riveting machine installs NAS1097KE5-5.5 rivets into A320 Section 18 fuselage side panels. For the thinnest stacks where the panel skin is under 2mm (2024) and the stringer is under 2mm (7075), the normal process of riveting will cause deformation of the panel or dimpling. The authors found a solution to this problem by forming the rivet with the upper pressure foot extended, and it has been tested and approved for production.
Technical Paper

Frame-Clip Riveting End Effector

2013-09-17
2013-01-2079
A frame-clip riveting end effector has been developed for installing 3.97mm (5/32) and 4.6mm (3/16) universal head aluminum rivets. The end effector can be mounted on the end of a robot arm. The end effector provides 35.6 kNt (8000 lbs) of rivet upset. Rivets can be installed fifteen millimeters from the IML. The clearance allowed to rivet centerline is 150 millimeters. The riveting process features a unique style of rivet fingers for the universal head rivet. These fingers allow the rivet to be brought in with the ram. This differentiates from some styles of frame-clip end effectors in which the rivet is blown into the hole. The paper shows the technical components of the end effector in sequence: the pneumatic clamp, rivet insert and upset. The end effector will be used for riveting shear ties to frames on the IML of fuselage panels.
Technical Paper

Electromagnetic Bolt Inserter

2012-09-10
2012-01-1880
The Electromagnetic Bolt Inserter (EMB) is a new tool that combines functions that on previous machines were performed by two tools, a bolt inserter followed by an EMR. By combining the operations of two tools in one the processing time for the wing spar is reduced. The tool incorporates quality checks for bolt length, stake height and bolt insert height.
Technical Paper

Refurbishment of 767 ASAT Drill-Rivet-Lockbolt Machines

2010-09-28
2010-01-1844
Boeing has relied upon the 767 ASAT (ASAT1) since 1983 to fasten the chords, stiffeners and rib posts to the web of the four 767 wing spars. The machine was originally commissioned with a Terra five axis CNC control. The Terra company went out of business and the controls were replaced with a custom DOS application in 1990. These are now hard to support so Boeing solicited proposals. Electroimpact proposed to retrofit with a Fanuc 31I CNC, and in addition, to replace all associated sensors, cables and feedback systems. This work is now complete on two of the four machines. Both left front and right front are in production with the new CNC control.
Technical Paper

Assembly Fixture for 787 Section 11, Heavy Composite Assembly

2007-09-17
2007-01-3869
The 787 Section 11 Assembly Cell is a combination fixed post and moving frame holding and indexing system, designed to determinately build the 787 Section 11 Wing box. The retractable overhead frame allows maximum clearance for safer and faster loading and unloading of component parts, as well as completed wingbody sections. Additionally, each index is also retractable allowing maximum fastener access inside the jig.
Technical Paper

Horizontal Rivet Injector Design Used on A320 Upper Panel

2007-09-17
2007-01-3783
This paper will cover the design of the horizontal rivet injector use on the SA2 LVER designated for stage 0 production of Airbus A320 Upper Wing Panels. The injector design is intended to decrease cycle times and increase reliability while not reducing the functionality over previous rivet feed designs used by Electroimpact. Specific rivet handling methods and design features will be reviewed and their result on cycle time and reliability discussed.
Technical Paper

Join Cell for the G150 Aircraft

2006-09-12
2006-01-3123
A simple, open, post and index system is used for final alignment and joining of the fuselage and wings of a new passenger business jet. 19 manually actuated axes precisely move the wings, forward, and rear fuselage sections into position. Movement is accomplished with industrial jacking screws and positions recorded with precision linear potentiometers. Wing sweep, angle of attack, and dihedral are monitored and controlled. The axes positions are downloaded to data files for verification and data archiving. The Gulfstream G150 Join Cell's open architecture enhances access to fasten the main aircraft structure while maintaining flight critical geometry.
Technical Paper

Sideways Collar Anvil For Use on A340-600

2005-10-03
2005-01-3300
A new method of installing LGP collars onto titanium lock bolts has been brought into production in the Airbus wing manufacturing facility in Broughton, Wales. The feed system involves transporting the collar down a rectangular cross-sectioned hose, through a rectangular pathway in the machine clamp anvil to the swage die without the use of fingers or grippers. This method allows the reliable feeding the collars without needing to adjust the position of feed fingers or grippers relative to the tool centerline. Also, more than one fastener diameter can be fed through one anvil geometry, requiring only a die change to switch between certain fastener diameters. In our application, offset and straight stringer geometries are accommodated by the same anvil.
Technical Paper

Evaluation of the EMR for Swaging Collars on Advanced Composite Laminates

2005-10-03
2005-01-3299
The Boeing 787 Dreamliner will be the most fuel-efficient airliner in the world when it enters service in 2008. To help achieve this, Boeing will utilize state-of-the-art carbon fiber for primary structures. Advanced manufacturing techniques and processes will be used in the assembly of large composite structures. Electroimpact has proposed a system utilizing the low recoil Low Voltage Electromagnetic Riveter (LVER) to drill and install bolts. A test program was initiated between Boeing Materials Process and Engineering (MP&E) and Electroimpact to validate the LVER process for swaging titanium collars on titanium pins in composite material. This paper details the results of these tests.
Technical Paper

A Two Tower Riveting Machine with a True Z Axis

2004-09-21
2004-01-2807
The A380 aircraft is the largest passenger aircraft ever built and an appropriate machine was required to accomplish the fastening of the wing plank to stringer and buttstrap joints. The lower wing panels are curved along the length and move 1.42m out of plane. All previous E4000 machines had clampup heads that would extend and retract whatever distance was required to contact the wing panel. To improve toolpoint alignment, Electroimpact added a Z-axis that moves the yoke in order to reduce the necessary travel envelope of the clamp table axes and to cause them to clamp in the same plane regardless of panel position along the Z-axis.
Technical Paper

Lightweight HH503 Handheld Riveter

2002-10-01
2002-01-2631
The handheld (HH) electromagnetic riveter (EMR) has been proven to be an effective means of installing rivets up to 3/8″ diameter. However, early versions were heavy and cumbersome to use. A new generation of handheld riveting systems has been developed with substantially reduced weight and improved ergonomics by incorporating a spring-damper recoil reduction system. Additional improvements include a simpler and more robust control system and a 0-1000V voltage range to improve efficiency.
Technical Paper

Self Contained Portable AFDE With On-Board CNC, Custom Operator Interface and RF Network

2000-09-19
2000-01-3011
Automated Floor Drilling Equipment (AFDE) have been used at Boeing for drilling floor panel, galley, lavatory and other holes in Boeing planes. New controller and drill spindle designs made it possible to redesign the AFDE as a self-contained unit with on-board CNC, custom operator interface, RF network and more compact drill spindles for increased robustness and versatility.
Technical Paper

Electric 30,000 RPM Shave Spindle for C Frame Riveter and High Performance Compact Aerospace Drill

2000-09-19
2000-01-3017
Two spindles are discussed in this paper. The first spindle was installed on nine C-frame riveters on the 737/757 wing line at the Boeing Renton facility. Due to discontinuing the use of Freon coolant and cutting fluid, the C-frame riveters had difficulty shaving 2034 ice box rivets with the existing 6000 RPM hydraulic spindles. The solution was to install electric 30,000 RPM shave spindles inside the existing 76.2 mm (3 in.) diameter hydraulic cylinder envelope. The new spindle is capable of 4 Nm (35 in. lbs.) of torque at full speed and 110 kgf (250 lbs.) of thrust. Another design of interest is the Electroimpact Model 09 spindle which is used for 20,000 RPM drilling and shaving on wing riveting systems. The Model 09 spindle is a complete servo-servo drilling system all mounted on a common baseplate. The entire spindle and feed assembly is only 6.5″ wide.
X