Refine Your Search

Topic

Search Results

Author:
Journal Article

The Effects of Cylinder Deactivation on the Thermal Behaviour and Performance of a Three Cylinder Spark Ignition Engine

2016-10-17
2016-01-2160
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
Technical Paper

A Modified Oil Lubrication System with Flow Control to Reduce Crankshaft Bearing Friction in a Litre 4 Cylinder Diesel Engine

2016-04-05
2016-01-1045
The oil distribution system of an automotive light duty engine typically has an oil pump mechanically driven through the front-endancillaries-drive or directly off the crankshaft. Delivery pressure is regulated by a relief valve to provide an oil gallery pressure of typically 3 to 4 bar absolute at fully-warm engine running conditions. Electrification of the oil pump drive is one way to decouple pump delivery from engine speed, but this does not alter the flow distribution between parts of the engine requiring lubrication. Here, the behaviour and benefits of a system with an electrically driven, fixed displacement pump and a distributor providing control over flow to crankshaft main bearings and big end bearings is examined. The aim has been to demonstrate that by controlling flow to these bearings, without changing flow to other parts of the engine, significant reductions in engine friction can be achieved.
Technical Paper

Modeling of In-Cylinder Soot Particle Size Evolution and Distribution in a Direct Injection Diesel Engine

2015-04-14
2015-01-1075
The focus of this study is to analyse changes in soot particle size along the predicted pathlines as they pass through different in-cylinder combustion histories obtained from Kiva-3v CFD simulation with a series of Matlab routines. 3500 locations representing soot particles were selected inside the cylinder at 8° CA ATDC as soot was formed in high concentration at this CA. The dominant soot particle size was recorded within the size range of 20-50 nm at earlier CA and shifted to 10-20 nm after 20° CA ATDC. Soot particle quantities reduce sharply until 20° CA ATDC after which they remain steady at around 1500 particles. Soot particles inside the bowl region tend to stick to the bowl walls and those remaining in the bowl experience an increase in size. Soot particles that move to the upper bowl and squish regions were observed to experience a decrease in size.
Technical Paper

CFD Investigation on the Influence of In-Cylinder Mixture Distribution from Multiple Pilot Injections on Cold Idle Behaviour of a Light Duty Diesel Engine

2014-10-13
2014-01-2708
Cold idle operation of a modern design light duty diesel engine and the effect of multiple pilot injections on stability were investigated. The investigation was initially carried out experimentally at 1000rpm and at −20°C. Benefits of mixture preparation were initially explored by a heat release analysis. Kiva 3v was then used to model the effect of multiple pilots on in-cylinder mixture distribution. A 60° sector of mesh was used taking advantage of rotational symmetry. The combustion system and injector arrangements mimic the HPCR diesel engine used in the experimental investigation. The CFD analysis covers evolutions from intake valve closing to start of combustion. The number of injections was varied from 1 to 4, but the total fuel injected was kept constant at 17mm3/stroke. Start of main injection timing was fixed at 7.5°BTDC.
Journal Article

A Novel Diagnostics Tool for Measuring Soot Agglomerates Size Distribution in Used Automotive Lubricant Oils

2014-04-01
2014-01-1479
The determination of size distribution of soot particles and agglomerates in oil samples using a Nanosight LM14 to perform Nanoparticle Tracking Analysis (NTA) is described. This is the first application of the technique to sizing soot-in-oil agglomerates and offers the advantages of relatively high rates of sample analysis and low cost compared to Transmission Electron Microscopy (TEM). Lubricating oil samples were drawn from the sump of automotive diesel engines run under a mix of light duty operating conditions. The oil samples were diluted with heptane before analysing. Results from NTA analysis were compared with the outputs of a more conventional analysis based on Dynamic Light Scattering (DLS). This work shows that soot-in-oil exists as agglomerates with average size of 115 nm. This is also in good agreement with TEM analysis carried out in a previous work. NTA can measure soot particles in polydisperse oil solutions and report the size distribution of soot-in-oil aggregates.
Technical Paper

Investigating the Effect of Carbon Nanoparticles on the Viscosity of Lubricant Oil from Light Duty Automotive Diesel Engines

2014-04-01
2014-01-1481
The influence of size and concentration of carbon nanoparticle on the viscosity of an SAE 5W-30 lubricant oil has been investigated experimentally. Data were collected for oil samples drawn from sump of light duty automotive diesel engines. The average size of soot particles in the used oil samples was in the range of 180-320nm with concentrations ranging from 0 to 2 percentage by weight (wt. %.). A Brookfield DV-II Pro rotary viscometer was used to measure dynamic viscosity at low shear rates and temperatures of 40°C and 90°C. Nanoparticle concentration and particle size distribution were evaluated using Thermo-Gravimetric Analysis (TGA) and Dynamic Light Scattering (DLS) respectively. The viscosity of suspensions of graphite powder in lubricant oil was also investigated for concentrations ranging from 0 to 2 wt. %. The results show that dynamic viscosity increases with increasing soot content and decreasing temperature.
Journal Article

The Influence of Injection Strategy and Glow Plug Temperature on Cycle by Cycle Stability Under Cold Idling Conditions for a Low Compression Ratio, HPCR Diesel Engine

2012-04-16
2012-01-1071
Experimental studies have been undertaken on a single-cylinder HPCR diesel engine with a compression ratio of 15.5:1 to explore the effect of fuel injection strategy on cycle by cycle stability. The influence of the number, separation and quantity of pilot injections on the coefficient of variation of IMEP has been investigated at -20°C, 1000 rev/min, post-start idling conditions. Injection strategy and glow plug temperature trade-off has also been investigated at a range of soak temperatures. Up to four pilot injections have been used. For timing of the main injection near to the optimum, CoVIMEP values of 10% or better can be achieved. Closer spacing of injections improved stability and extended the range of timings to meet target stability. The best combinations of pilot number and pilot quantity varied with total fuel delivered.
Journal Article

The Effect of Piston Cooling Jets on Diesel Engine Piston Temperatures, Emissions and Fuel Consumption

2012-04-16
2012-01-1212
A Ford 2.4-liter 115PS light-duty diesel engine was modified to allow solenoid control of the oil feed to the piston cooling jets, enabling these to be switched on or off on demand. The influence of the jets on piston temperatures, engine thermal state, gaseous emissions and fuel economy has been investigated. With the jets switched off, piston temperatures were measured to be between 23 and 88°C higher. Across a range of speed-load points, switching off the jets increased engine-out emissions of NOx typically by 3%, and reduced emissions of CO by 5-10%. Changes in HC were of the same order and were reductions at most conditions. Fuel consumption increased at low-speed, high-load conditions and decreased at high-speed, low-load conditions. Applying the results to the NEDC drive cycle suggests active on/off control of the jets could reduce engine-out emissions of CO by 6%, at the expense of a 1% increase in NOx, compared to the case when the jets are on continuously.
Journal Article

Investigating the Potential to Reduce Crankshaft Main Bearing Friction During Engine Warm-up by Raising Oil Feed Temperature

2012-04-16
2012-01-1216
Reducing friction in crankshaft bearings during cold engine operation by heating the oil supply to the main gallery has been investigated through experimental investigations and computational modelling. The experimental work was undertaken on a 2.4l DI diesel engine set up with an external heat source to supply hot oil to the gallery. The aim was to raise the film temperature in the main bearings early in the warm up, producing a reduction in oil viscosity and through this, a reduction in friction losses. The effectiveness of this approach depends on the management of heat losses from the oil. Heat transfer along the oil pathway to the bearings, and within the bearings to the journals and shells, reduces the benefit of the upstream heating.
Technical Paper

Predicted Paths of Soot Particles in the Cylinders of a Direct Injection Diesel Engine

2012-04-16
2012-01-0148
Soot formation and distribution inside the cylinder of a light-duty direct injection diesel engine, have been predicted using Kiva-3v CFD software. Pathlines of soot particles traced from specific in-cylinder locations and crank angle instants have been explored using the results for cylinder charge motion predicted by the Kiva-3v code. Pathlines are determined assuming soot particles are massless and follow charge motion. Coagulation and agglomeration have not been taken into account. High rates of soot formation dominate during and just after the injection. Oxidation becomes dominant after the injection has terminated and throughout the power stroke. Computed soot pathlines show that soot particles formed just below the fuel spray axis during the early injection period are more likely to travel to the cylinder wall boundary layer. Soot particles above the fuel spray have lesser tendency to be conveyed to the cylinder wall.
Technical Paper

The Influence of Compression Ratio on Indicated Emissions and Fuel Economy Responses to Input Variables for a D.I Diesel Engine Combustion System

2012-04-16
2012-01-0697
The effect of compression ratio on sensitivity to changes in start of injection and air-fuel ratio has been investigated on a single-cylinder DI diesel engine at fixed low and medium speeds and loads. Compression ratio was set to 17.9:1 or 13.7:1 by using pistons with different bowl sizes. Injection timing and air-to-fuel ratio were swept around a nominal map point at which gross IMEP and NOx values were matched for the two compression ratios. It was found that CO, HC and ISFC were higher at low compression ratio, but the soot/NOx trade-off improved and this could be exploited to reduce the fuel economy penalty. Sensitivity to inputs is generally similar, but high compression ratio tended to have steeper response gradients. Reducing compression ratio to 13.7 gave rise to a marked degradation of performance at light load, producing high CO emissions and a fall in combustion efficiency. This could be eased by reducing rail pressure, but the advantage in smoke emission was lost.
Technical Paper

A New Floating-Liner Test Rig Design to Investigate Factors Influencing Piston-Liner Friction

2012-04-16
2012-01-1328
The largest contribution to engine rubbing friction is made by the piston and piston rings running in the cylinder liner. The magnitude and characteristics of the friction behaviour and the influence on these of factors such as surface roughness, piston design and lubricant properties are of keen interest. Investigating presents experimental challenges, including potential problems of uncontrolled build-to-build variability when component changes are made. These are addressed in the design of a new motored piston and floating liner rig. The design constrains transverse movement of a single liner using cantilevered mounts at the top and bottom. The mounts and two high stiffness strain gauged load cells constrain vertical movement. The outputs of the load cells are processed to extract the force contribution associated with friction. The liner, piston and crankshaft parts were taken from a EuroV-compliant, HPCR diesel engine with a swept capacity of 550cc per cylinder.
Journal Article

Investigating the Effects of Multiple Pilot Injections on Stability at Cold Idle for a Dl Diesel Engine

2009-04-20
2009-01-0612
An experimental investigation of combustion cycle-by-cycle stability under cold idling conditions has been carried out on a Dl diesel to examine the influence of pilot fuel injection strategy. The engine is a single cylinder variant of a multi-cylinder design meeting Euro 4 emissions requirements. The engine build had a swept volume of 500cc and a compression ratio of 18.4:1. Work output and heat release characteristics have been investigated at test temperatures of 10, 0, −10 and −20°C and speeds in the range from 600 to 1400rpm. At the lowest temperature, −20°C, stability is sensitive to the timing of main injection and is prone to deteriorate with increasing engine speed. The influence of the number of pilot injections and pilot fuel quantity on stability has been explored. Best stability was achieved by increasing the number of pilot injections as temperature is lowered, from one at 10°C to two at −10°C and between two and four at −20°C.
Journal Article

Investigations of Piston Ring Pack and Skirt Contributions to Motored Engine Friction

2008-04-14
2008-01-1046
An experimental study has been carried out to examine the influence of ring tan load and piston skirt modifications on piston assembly friction under motored engine conditions for initial temperatures of -20, 0 and 30°C and motoring speeds within the range 400 to 2000 rev/min. The study has been carried out using the block, crankshaft and pistons of a 2.4I, 4 cylinder diesel engine with a bore and stroke of 89.9mm and 94.6mm respectively. The pistons examined are typical of current designs for light duty diesels. A range of ring pack and piston skirt modifications have been tested, in each case as part of a complete piston assembly. The first changes produced reductions in fmep of between 5% and 38%. The reduction was due to improved skirt and ring pack designs in equal measure, each giving improvements of up to 20%. From this baseline eliminating the tan load of the piston rings was projected to give a further reduction in fmep of between 10% and 20%.
Journal Article

The Effect of Reducing Compression Ratio on the Work Output and Heat Release Characteristics of a DI Diesel under Cold Start Conditions

2008-04-14
2008-01-1306
An experimental investigation has been carried out to compare the indicated performance and heat release characteristics of a DI diesel engine at compression ratios of 18.4:1 and 15.4:1. The compression ratio was changed by modifying the piston bowl volume; the bore and stroke were unchanged, and the swept volume was nominally 500cc. The engine is a single cylinder variant of modern design which meets Euro 4 emissions requirements. Work output and heat release characteristics for the two compression ratios have been compared at an engine speed of 300 rev/min and test temperatures of 10, -10 and -20°C. A more limited comparison has also been made for higher speeds representative of cold idle at one test temperature (-20°C). The reduction in compression ratio generally produces an increase in peak specific indicated work output at low speeds; this is attributable to a reduction in blowby and heat transfer losses and lower peak rates of heat release increasing cumulative burn.
Technical Paper

Constraints on Fuel Injection and EGR Strategies for Diesel PCCI-Type Combustion

2008-04-14
2008-01-1327
An experimental study has been carried out to explore what limits fuel injection and EGR strategies when trying to run a PCCI-type mode of combustion on an engine with current generation hardware. The engine is a turbocharged V6 DI diesel with (1600 bar) HPCR fuel injection equipment and a cooled external EGR system. The variables examined have been the split and timings of fuel injections and the level of EGR; the responses investigated have been ignition delay, heat release, combustion noise, engine-out emissions and brake specific fuel consumption. Although PCCI-type combustion strategies can be effective in reducing NOx and soot emissions, it proved difficult to achieve this without either a high noise or a fuel economy penalty.
Technical Paper

Experimental Investigations of Intake and Exhaust Valve Timing Effects on Charge Dilution by Residuals, Fuel Consumption and Emissions at Part Load

2007-04-16
2007-01-0478
Experimental investigations of intake and exhaust valve timing effects at part load have been carried out on a 4 cylinder, 1.6 l spark ignition engine. The effects of valve timing on charge dilution by residual gases, and on fuel consumption and emission characteristics, have been explored. The valve timings, and particularly the duration of the valve overlap period, strongly influence levels of charge dilution. The extent to which this accounts for the observed changes in specific fuel consumption and emissions with valve timings is investigated. Residuals gas fraction values have been determined at various steady operating conditions through the analysis of gas samples drawn from the cylinder near the tip of the spark plug. A gasoline direct injection fuel injector operating in reverse flow was used as a high-speed sampling valve. Brake specific values reflect a combination of changes in dilution and, at different brake loads, changes in pumping work.
Technical Paper

Contributions to Engine Friction During Cold, Low Speed Running and the Dependence on Oil Viscosity

2005-04-11
2005-01-1654
Friction data have been acquired from motored engine tests on four designs of light duty automotive diesel engines with a swept capacity around two litres (1.8l-2.2l). The data cover temperatures at the start of motoring of -20°C and above, and motoring speeds from 200 rev/min to 1000 rev/min. Most tests were carried out using SAE 10W/30 oil. The breakdowns separated piston assembly, crankshaft assembly, valve train and auxiliary component contributions to friction mean effective pressure (fmep). The empirical coefficients and functions used in the engine friction model developed by Patton, Nitschke and Heywood (SAE 890836) have been modified to fit the low speed, low temperature test data without greatly affecting predictions for fully-warm conditions. The dependence of component contributions on oil viscosity during warm-up has been taken into account.
Technical Paper

Running Real-Time Engine Model Simulation with Hardware-in-the-Loop for Diesel Engine Development

2005-04-11
2005-01-0056
The paper reports the design of a model and HIL system produced to support the development and testing of Electronic Control Unit/Engine Management System (ECU/EMS) software for a V6 turbo-charged automotive diesel engine. The engine model, developed in Simulink, is compiled to execute on a dSpace platform and interacts with the ECU/EMS module in real time. The main features of the engine model are outlined. The configuration of the model and HIL components are described, and the performance of the system is illustrated and discussed. Practical decisions on the inclusion of real or virtual sensors and actuators, and other implementation issues, are explained. Recent and potential future applications of the system are described.
Technical Paper

The Influence of Pilot and Split-Main Injection Parameters on Diesel Emissions and Fuel Consumption

2005-04-11
2005-01-0375
The paper outlines experimental investigations of fuel injection strategies which are possible using high pressure common rail fuel injection systems. Strategies using a split main with a pilot injection have been explored. The strategy variables were the ratio of the first to second part of the main, the separation between these and the timing of the start of main injection. Exhaust gas recirculation rate was a fourth variable. Pilot injection quantity and timing, and rail pressure were held constant. The influence on emissions and specific fuel consumption is described and the method of optimising settings is outlined. The manipulation of fuel injection settings to best meet optimisation targets for emissions and specific fuel consumption is described. The benefits compared to results for optimised single main injection are described, as are issues of strategy robustness.
X