Refine Your Search

Search Results

Viewing 1 to 15 of 15
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel Emission Control Systems

2011-04-12
2011-01-0308
Diesel NOx emissions control utilizing combined Lean NOx Trap (LNT) and so-called passive or in-situ Selective Catalytic Reduction (SCR) catalyst technologies (i.e. with reductant species generated by the LNT) has been the subject of several previous papers from our laboratory [ 1 - 2 ]. The present study focuses on hydrocarbon (HC) emissions control via the same LNT+SCR catalyst technology under FTP driving conditions. HC emissions control can be as challenging as NOx control under both current and future federal and California/Green State emission standards. However, as with NOx control, the combined LNT+SCR approach offers advantages for HC emission control over LNT-only aftertreatment. The incremental conversion obtained with the SCR catalyst is shown, both on the basis of vehicle and laboratory tests, to result primarily from HC adsorbed on the SCR catalyst during rich LNT purges that reacts during subsequent lean engine operation.
Technical Paper

LNT+SCR Catalyst Systems Optimized for NOx Conversion on Diesel Applications

2011-04-12
2011-01-0305
A laboratory study was performed to assess the effectiveness of LNT+SCR systems for NOx control in lean exhaust. The effects of the catalyst system length and the spatial configuration of the LNT & SCR catalysts were evaluated for their effects on the NOx conversion, NH₃ yield, N₂O yield, and HC conversion. It was found that multi-zone catalyst architectures with four or eight alternating LNT and SCR catalyst zones had equivalent gross NOx conversion, lower NH₃ and N₂O yield, and significantly higher net conversion of NOx to N₂ than an all-LNT design or a standard LNT+SCR configuration, where all of the SCR volume is placed downstream of the LNT. The lower NH₃ emissions of the two multi-zone designs relative to the standard LNT+SCR design were attributed to the improved balance of NOx and NH₃ in the SCR zones.
Journal Article

The Effects of Sulfur Poisoning and Desulfation Temperature on the NOx Conversion of LNT+SCR Systems for Diesel Applications

2010-04-12
2010-01-0300
A laboratory study was performed to assess the effects of sulfur poisoning and desulfation temperature on the NO conversion of a LNT+(Cu/SCR) in-situ system. Four LNT+(Cu/SCR) systems were aged for 4.5 hours without sulfur at 600, 700, 750, and 800°C using A/F ratio modulations to represent 23K miles of desulfations at different temperatures. NO conversion tests were performed on the LNT alone and on the LNT+SCR system using a 60 s lean/5 s rich cycle. The catalysts were then sulfur-poisoned at 400°C and desulfated four times and re-evaluated on the 60/5 tests. This test sequence was repeated 3 more times to represent 100K miles of desulfations. After simulating 23K miles of desulfations, the Cu-based SCR catalysts improved the NO conversion of the LNT at low temperatures (e.g., 300°C), although the benefit decreased as the desulfation temperature increased from 600°C to 800°C.
Journal Article

Laboratory and Vehicle Demonstration of “2nd-Generation” LNT + in-situ SCR Diesel NOx Emission Control Systems

2010-04-12
2010-01-0305
This study extends research previously reported from our laboratory [SAE 2009-01-0285] on diesel NOx control utilizing a new generation of Lean NOx Trap (LNT) plus in-situ Selective Catalytic Reduction (SCR) catalyst systems. Key findings from this work include 1) evidence for a “non-ammonia” reduction pathway over the SCR catalyst (in addition to the conventional ammonia pathway), 2) high NOx conversions utilizing LNT formulations with substantially lower platinum group metal (PGM) loadings than utilized in earlier systems, 3) ability of the downstream SCR catalyst to maintain high overall system NOx efficiency with aged LNTs, and 4) effectiveness of both Cu- and Fe-zeolite SCR formulations to enhance overall system NOx efficiency. FTP NOx conversion efficiencies in excess of 95% were obtained on two light-duty vehicle platforms with lab-aged catalyst systems, thus showing potential of the LNT+SCR approach for achieving the lowest U.S. emissions standards
Technical Paper

Impact of a Cu-zeolite SCR Catalyst on the Performance of a Diesel LNT+SCR System

2009-04-20
2009-01-0285
Advanced Cu-zeolite based SCR (selective catalytic reduction) catalyst technologies were evaluated in a laboratory reactor as a component of a diesel LNT (lean NOx trap) plus in-situ SCR system (i.e., NH3 generation over the LNT vs injection via urea). New-generation LNT formulations, with lower desulfation temperatures and improved durability characteristics relative to previous LNTs, were also evaluated. The combined new-generation LNT+Cu-zeolite SCR systems showed a much wider temperature window of high NOx conversion compared to either LNT catalysts alone or LNT+SCR systems utilizing Fe-zeolite SCR catalysts. The new-generation Cu-zeolite SCR catalysts retained high activity even after repeated exposure to high-temperature rich DeSOx conditions in a laboratory 3-mode aging cycle simulating 120,000 mile vehicle driving.
Technical Paper

The Feasibility of an Alumina-Based Lean NOx Trap (LNT) for Diesel and HCCI Applications

2008-04-14
2008-01-0451
An alumina-based LNT is being developed through laboratory studies, for diesel vehicle applications. This LNT provides high NOx conversion efficiency at low temperature (150 to 350°C, especially below 200°C), which is very important for the exhaust-gas after-treatment of diesel passenger vehicles. Addition of 2 to 4 wt% of alkaline-earth metal oxide or other metal oxides to the alumina LNT formulation improves NOx reduction activity at the high end of its active temperature window. More significantly, the alumina-based LNT can undergo the de-SOx process (the process of removing sulfur from the catalytic surfaces) very efficiently: within 1 minute at the relatively low temperature of 500 to 650°C under slightly rich conditions (λ = 0.98 to 0.987). Such a mild de-SOx process imposes minimal thermal exposure, causing almost no thermal damage to the LNT, and helps minimize the associated fuel penalty.
Technical Paper

Impact of Oil Consumption Modes and Pathways on Oil-Derived Catalyst Deposits

2007-04-16
2007-01-1072
Catalyst poisoning from engine oil additives is a complicated process that depends in part on the pathway by which the oil is consumed in the engine. Engine studies were conducted to assess the relative impact of three major modes of oil consumption - through the PCV system, past the piston rings, and through the valve guides. Minimal phosphorus poisoning was observed with oil consumed through the PCV system and piston rings, whereas oil consumed through the intake valve guides demonstrated severe catalyst poisoning. The former produces effects characteristic of complete combustion of the ZDDP additive previously shown to produce relatively innocuous washcoat overlayers of porous zinc phosphate. In contrast, the latter produces effects characteristic of incomplete combustion (i.e., spray of oil additive into the exhaust and, most notably a washcoat pore-plugging effect accompanied by a marked decrease in washcoat surface area.
Technical Paper

The Effects of Platinum and Rhodium on the Functional Properties of a Lean NOx Trap

2007-04-16
2007-01-1055
A laboratory study was performed to assess the contributions of platinum and rhodium to the emissions performance of a lean NOx trap. Samples of a barium-only formulation were obtained with either 0.84 g/L of platinum, 0.51 g/L of rhodium, or 1.0 g/L of platinum and rhodium in ratios of 1/0/1 or 5/0/1. 60 s lean/5 s rich tests were performed on fresh samples and samples that were aged on high temperature durability cycles. The results indicate that platinum is necessary for the NOx storage performance of the trap at low temperatures (e.g., 250°C), whereas rhodium is needed for the NOx reduction capability and consequently the purgability of the trap at low temperatures. As a result, the bimetallic Pt/Rh samples provided the best overall NOx conversion at low temperatures fresh and after aging.
Technical Paper

Laboratory and Engine Study of Urea-Related Deposits in Diesel Urea-SCR After-Treatment Systems

2007-04-16
2007-01-1582
Diesel exhaust systems equipped with selective catalytic reduction (SCR) catalysts based on urea were subjected to an aging process where the exhaust gas temperature was below 300°C. Solid deposits related to urea injection were found on the wall of the exhaust pipe down stream of the urea injector and on a urea mixer in front of the SCR catalyst. In laboratory tests, an aqueous solution of urea (1.5wt%) was dripped onto an SCR catalyst core in a simulated lean gas mixture at a rate corresponding to a 1:1 NH3-to-NOx ratio (NOx = 350ppm) and a space velocity (SV) of 15,000 h-1 at various temperatures. At 300°C and below, urea-related deposits appeared on the SCR catalyst surface and totally plugged the SCR catalyst monolith within 250 hours. When the aging temperature was 350°C or above, no deposits were observed on the SCR catalyst core.
Technical Paper

Reductive Elimination as a Mechanism for Purging a Lean NOx Trap

2006-04-03
2006-01-1067
The mechanism for the purging of a lean NOx trap has been investigated. For realistic purge times (e.g., 2 to 5 seconds), the stored NOx species do not decompose simply from equilibrium considerations (i.e., from the drop in O2 and NO concentrations during the rich purge). Instead, the decomposition of stored NOx is promoted by the reductants in the exhaust by a process referred to as reductive elimination. H2 is far more effective than CO or C3H6 for promoting this reductive elimination, particularly at low temperatures (e.g., 250°C). As long as H2 is available in the feedgas, H2O does not participate in the reductive elimination. However, if CO is the only reductant, H2O is needed to convert some of the CO to H2 through the water-gas-shift reaction. H2O is also important for the efficient storage of NOx during lean operation, possibly by enhancing the spillover of NO2 from a precious metal site to a NOx storage site.
Technical Paper

Lean NOx Trap System Design for Cost Reduction and Performance Improvement

2006-04-03
2006-01-1069
The effects of PGM zoning and washcoat staging have been investigated as a means to lower the cost and simultaneously improve the performance of a lean NOx trap system. It is shown that reverse PGM zoning can be used to reduce the cost of the LNT while essentially maintaining the NOx performance of a similarly-sized trap with a uniformly high PGM loading. In addition, the effective temperature window of the trap can be expanded by staging different NOx trap formulations that are optimized for different temperature ranges. Alternatively, LNT washcoat staging can be used to improve the hydrocarbon conversion of the trap while maintaining good NOx performance. Laboratory data and vehicle data are presented for several NOx trap system combinations that demonstrate the improved performance that can be obtained from a combination of reverse PGM zoning and washcoat staging.
Technical Paper

Laboratory Study of Lean NOx Trap Desulfation Strategies

2005-04-11
2005-01-1114
Desulfation characteristics of several model and fully-formulated monolithic lean NOx trap materials were studied in a laboratory flow reactor employing a chemical ionization mass spectrometer. For all samples, desulfation at elevated temperatures under reducing conditions resulted in appearance of sulfur dioxide (SO2) followed by carbonyl sulfide (COS) and hydrogen sulfide (H2S). The data appear consistent with a desulfation mechanism involving elimination of SO2 from stored sulfates under reducing conditions, followed by reaction of the SO2 with CO and H2 to produce COS and H2S, respectively. Based on these observations, several cyclic and multistage desulfation strategies were devised which greatly decreased H2S emissions while achieving relatively rapid and complete sulfur removal.
Technical Paper

Effects of MMT® Fuel Additive on Emission System Components: Comparison of Clear- and MMT®-fueled Escort Vehicles from the Alliance Study

2004-03-08
2004-01-1084
Emission studies were carried out on clear-fueled and MMT®-fueled 100,000-mile Escort vehicles from the Alliance study [SAE 2002-01-2894]. Alliance testing had revealed substantially higher emissions from the MMT-fueled vehicle, and the present study involved swapping the engine cylinder heads, spark plugs, oxygen sensors, and catalysts between the two vehicles to identify the specific components responsible for the emissions increase. Within 90% confidence limits, all of the emissions differences between the MMT- and Clear-vehicles could be accounted for by the selected components. NMHC emission increases were primarily attributed to the effects of the MMT cylinder head and spark plugs on both engine-out and tailpipe emissions. CO emission increases were largely traced to the MMT cylinder head and its effect on tailpipe emissions. NOx emission increases were linked to the MMT catalyst.
Technical Paper

Effects of Engine Oil Formulation Variables on Exhaust Emissions in Taxi Fleet Service

2002-10-21
2002-01-2680
The relationship between engine oil formulations and catalyst performance was investigated by comparatively testing five engine oils. In addition to one baseline production oil with a calcium plus magnesium detergent system, the remaining four oils were specifically formulated with different additive combinations including: one worst case with no detergent and production level zinc dialkyldithiophosphate (ZDTP), one with calcium-only detergent and two best cases with zero phosphorus. Emissions performance, phosphorus loss from the engine oil, phosphorus-capture on the catalyst and engine wear were evaluated after accumulating 100,000 miles of taxi service in twenty vehicles. The intent of this comparative study was to identify relative trends.
Technical Paper

Effects of Oil-Derived Contaminants on Emissions from TWC-Equipped Vehicles

2000-06-19
2000-01-1881
Advances in fuel control strategy, emission system architecture, and catalyst technology have led to dramatic decreases in exhaust emissions in recent years. To continue this trend, especially at high mileages, the impact of engine oil derived contaminants will need to be minimized. In this study, the deactivating effects of oil-derived contaminants on advanced catalyst technologies was assessed using an oxalic acid washing technique to remove phosphorus and other oil-derived contaminants from fleet-aged automotive three-way exhaust catalysts. Acid washing removed most of the phosphorus on the catalyst (chief poison associated with decomposition of the engine oil antiwear additive ZDDP) without significantly affecting other catalyst properties. Catalysts from eight high-mileage vehicles were analyzed, representing four vehicle families.
X