Refine Your Search

Topic

Search Results

Author:
Technical Paper

Soot Formation Modeling of n-dodecane and Diesel Sprays under Engine-Like Conditions

2015-09-06
2015-24-2468
This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised multi-step soot model is validated by comparing to the experimental data of n-dodecane fuel in which the associated chemistry is better understood. In the diesel spray simulations, a single component n-heptane mechanism and the multi-component Diesel Oil Surrogate (DOS) model are adopted. A newly developed C16-based model which comprises skeletal mechanisms of n-hexadecane, heptamethylnonane, cyclohexane and toluene is also implemented. Comparisons of the results show that the simulated liftoff lengths are reasonably well-matched to the experimental measurement, where the relative differences are retained to below 18%.
Journal Article

Development and Validation of Chemical Kinetic Mechanism Reduction Scheme for Large-Scale Mechanisms

2014-10-13
2014-01-2576
This work is an extension to a previously reported work on chemical kinetic mechanism reduction scheme for large-scale mechanisms. Here, Perfectly Stirred Reactor (PSR) was added as a criterion of data source for mechanism reduction instead of using only auto-ignition condition. As a result, a reduced n-hexadecane mechanism with 79 species for diesel fuel surrogate was successfully derived from the detailed mechanism. Following that, the reduced n-hexadecane mechanism was validated under auto-ignition and PSR conditions using zero-dimensional (0-D) closed homogeneous batch reactor in CHEMKIN-PRO software. Agreement was achieved between the reduced and detailed mechanisms in ignition timing predictions and the reduced n-hexadecane mechanism was able to reproduce species concentration profiles with a maximum error of 40%. Accordingly, two-dimensional (2-D) Computational Fluid Dynamic (CFD) simulations were performed to study the spray combustion phenomena within a constant volume bomb.
Technical Paper

Investigation of Chemical Kinetics on Soot Formation Event of n-Heptane Spray Combustion

2014-04-01
2014-01-1254
In this reported work, 2-dimsensional computational fluid dynamics studies of n-heptane combustion and soot formation processes in the Sandia constant-volume vessel are carried out. The key interest here is to elucidate how the chemical kinetics affects the combustion and soot formation events. Numerical computation is performed using OpenFOAM and chemistry coordinate mapping (CCM) approach is used to expedite the calculation. Three n-heptane kinetic mechanisms with different chemistry sizes and comprehensiveness in oxidation pathways and soot precursor formation are adopted. The three examined chemical models use acetylene (C2H2), benzene ring (A1) and pyrene (A4) as soot precursor. They are henceforth addressed as nhepC2H2, nhepA1 and nhepA4, respectively for brevity. Here, a multistep soot model is coupled with the spray combustion solver to simulate the soot formation/oxidation processes.
Journal Article

Evaluation and Development of Chemical Kinetic Mechanism Reduction Scheme for Biodiesel and Diesel Fuel Surrogates

2013-10-14
2013-01-2630
The aim of this study is to evaluate the existing chemical kinetic mechanism reduction techniques. From here, an appropriate reduction scheme was developed to create compact yet comprehensive surrogate models for both diesel and biodiesel fuels for diesel engine applications. The reduction techniques applied here were Directed Relation Graph (DRG), DRG with Error Propagation, DRG-aided Sensitivity Analysis, and DRG with Error Propagation and Sensitivity Analysis. Nonetheless, the reduced mechanisms generated via these techniques were not sufficiently small for application in multi-dimensional computational fluid dynamics (CFD) study. A new reduction scheme was therefore formulated. A 68-species mechanism for biodiesel surrogate and a 49-species mechanism for diesel surrogate were successfully derived from the respective detailed mechanisms.
Technical Paper

Development of Surrogate for Fischer-Tropsch Biofuel and Reduced Mechanism for Combustion in Diesel Engine

2013-10-14
2013-01-2599
Development of numerical tools for quantitatively assessing biofuel combustion in Internal Combustion Engines and facilitating the identification of optimum operating parameters and emission strategy are challenges of engine combustion research. Biofuels obtained through e.g. a Fischer-Tropsch process (FT) are complex mixtures of wide ranges of high molecular weight hydrocarbons in the diesel and naphtha boiling range dominated by C10-C18 hydrocarbons in n-alkane, iso-alkane, alkenes, aromatic and oxygenate classes. In this paper modeling of combustion in a rapid compression machine has been performed using model compounds from a given FT biofuel distribution as surrogate fuels. Furthermore, the detailed mechanism has been reduced by applying an automatic necessity analysis removing redundant species from the detailed model.
Technical Paper

Steady State Investigations of DPF Soot Burn Rates and DPF Modeling

2011-09-11
2011-24-0181
This work presents the experimental investigation of Diesel Particulate Filter (DPF) regeneration and a calibration procedure of a 1D DPF simulation model based on the commercial software AVL BOOST v. 5.1. Model constants and parameters are fitted on the basis of a number of steady state DPF experiments where the DPF is exposed to real engine exhaust gas in a test bed. The DPF is a silicon carbide filter of the wall flow type without a catalytic coating. A key task concerning the DPF model calibration is to perform accurate DPF experiments because measured gas concentrations, temperatures and soot mass concentrations are used as model boundary conditions. An in-house-developed raw exhaust gas sampling technique is used to measure the soot concentration upstream the DPF which is also needed to find the DPF soot burn rate.
Technical Paper

Optimizing the Performance of a 50cc Compression Ignition Two-Stroke Engine Operating on Dimethyl Ether

2011-04-12
2011-01-0144
The paper describes the optimization of a 50 cc crankcase scavenged two-stroke diesel engine operating on dimethyl ether (DME). The optimization is primarily done with respect to engine efficiency. The underlying idea behind the work is that the low weight, low internal friction and low engine-out NOx of such an engine could make it ideal for future vehicles operating on second-generation biofuels. Data is presented for the performance and emissions at the current state of development of the engine. Brake efficiencies above 30% were obtained despite the small size of the engine. In addition, efficiencies near the maximum were found over a wide operating range of speeds and loads. Maximum bmep is 500 kPa. Results are shown for engine speeds ranging from 2000 to 5000 rpm and loads from idle to full load. At all speeds and loads NOx emissions are below 200 ppm and smokeless operation is achieved. Design improvements relative to an earlier prototype are described.
Journal Article

Comparison of Diesel Spray Combustion in Different High-Temperature, High-Pressure Facilities

2010-10-25
2010-01-2106
Diesel spray experimentation at controlled high-temperature and high-pressure conditions is intended to provide a more fundamental understanding of diesel combustion than can be achieved in engine experiments. This level of understanding is needed to develop the high-fidelity multi-scale CFD models that will be used to optimize future engine designs. Several spray chamber facilities capable of high-temperature, high-pressure conditions typical of engine combustion have been developed, but because of the uniqueness of each facility, there are uncertainties about their operation. For this paper, we describe results from comparative studies using constant-volume vessels at Sandia National Laboratories and IFP.
Technical Paper

Reduction of HCCI Combustion Noise Through Piston Crown Design

2010-05-05
2010-01-1487
Seven shapes of piston crowns have been evaluated for their ability to reduce HCCI knock and transmission of combustion noise to the engine. The performance of each piston crown was evaluated with measurements of cylinder pressure, engine vibration and acoustic sound pressure measured one meter away from the engine. The experiments were conducted in a diesel engine that was run in HCCI combustion mode with a fixed quantity of DME as fuel. The results show that combustion knock is effectively suppressed by limiting the size of the volume in which the combustion occurs. Splitting the compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise.
Technical Paper

Controlling the Heat Release in HCCI Combustion of DME with Methanol and EGR

2010-05-05
2010-01-1489
The effects of methanol and EGR on HCCI combustion of dimethyl ether have been tested separately in a diesel engine. The engine was equipped with a common rail injection system which allowed for random injection of DME. The engine could therefore be operated either as a normal DI CI engine or, by advancing the injection timing 360 CAD, as an HCCI engine. The compression ratio of the engine was reduced to 14.5 by enlarging the piston bowls. The engine was operated in HCCI mode with DME at an equivalence ratio of 0.25. To retard the combustion timing, methanol was port fuel injected and the optimum quantity required was determined. The added methanol increased the BMEP by increasing the total heat release and retarding the combustion to after TDC. Engine knock was reduced with increasing quantities of methanol. The highest BMEP was achieved when the equivalence ratio of methanol was around 0.12 at 1000 RPM, and around 0.76 at 1800 RPM. EGR was also used to retarding the timing.
Technical Paper

Emissions from Diesel and Gasoline Vehicles Fuelled by Fischer-Tropsch Fuels and Similar Fuels

2007-10-29
2007-01-4008
The described investigation was carried out under the umbrella of IEA Advanced Motor Fuels Agreement. The purpose was to evaluate the emissions of carbon monoxide (CO), unburned hydrocarbons (HC), nitrogen oxides (NOx), particulate matter (PM) and polycyclic aromatic hydrocarbons (PAH) from vehicles fuelled by Fischer Tropsch (FT) based diesel and gasoline fuel, compared to the emissions from ordinary diesel and gasoline. The comparison for diesel fuels was based on a literature review, whereas the gasoline comparison had to be based on our own experiments, since almost no references were found in this field. In this context measurement according to the Federal Test Procedure (FTP) and the New European Driving Cycle (NEDC) were carried out on a chassis dynamometer with a directly injected gasoline vehicle. Experiments were carried out with a reference fuel, a fuel based 70% on FT and an alkylate fuel (Aspen), which was taken to be the ultimate formula of FT gasoline.
Technical Paper

Investigation of Continuous Gas Engine CHP Operation on Biomass Producer Gas

2005-10-24
2005-01-3778
About 2000 hours of gas engine operation with producer gas from biomass as fuel has been conducted on the gasification combined heat and power (CHP) demonstration and research plant, named “Viking” at the Technical University of Denmark. The plant and engine have been operated continuously and unmanned for five test periods of approximately 400 hours each. Two different control approaches have been applied and investigated: one where the flow rate of the producer gas is fixed and the engine operates with varying excess of air due to variation in gas composition and a second where the excess of air in the exhaust gas is fixed and the flow rate of produced gas from the gasifier is varying. It was seen that the optimal control approach regarding the gasifier operation resulted in engine operation with significant variation of the NOx emissions Producer gas properties and contaminations have been investigated.
Technical Paper

Application of a Biodegradable Lubricant in Two Flexible Fuel Vehicles

2004-10-25
2004-01-2988
The IEA Advanced Motor Fuels Agreement has initiated this project concerning the application of biodegradable lubricants to diesel and gasoline type vehicles. Emission measurements on a chassis dynamometer were carried out. The purpose of these measurements was to compare the emissions of CO, CO2, NOx, THC, PM, lubricant-SOF and PAH from diesel and gasoline type vehicles using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the gasoline type vehicles only - two FFV's (Flexible Fuel Vehicles). The results from the measurements on the diesel type vehicles are described in an earlier SAE paper [1]. Lubricant consumption and fuel consumption are other important parameters that have been evaluated during the experiments. Both vehicle types were operated on conventional crude oil based fuels and alternative fuels.
Technical Paper

Bitumen/Water Emulsions as Fuels for High-Speed CI Engines Preliminary Investigations

2003-10-27
2003-01-3143
Mixtures of bitumen and water, are cheap fuel alternatives for combustion engines. There are, however, several problems that have to be solved before these fuels can be applied in high-speed diesel engines. These are: emulsion break up due to high temperature or high shear stress in the injection system high content of heavy metals high emissions of particulate matter and PAH This investigation deals with the problem of separation due to high shear stress in the injection system. It is shown that the viscosity of the injected fuel can be used to estimate whether the emulsion has separated or not. The method is applied to evaluate the results of injection experiments where the limits of the temperature and injection pressure/shear stress of a bitumen/water emulsion in an injection system are investigated.
Technical Paper

Application of a Biodegradable Lubricant in a Diesel Vehicle

2003-10-27
2003-01-3111
The IEA Advanced Motor Fuels Agreement has initiated this project concerning the application of biodegradable lubricants to diesel and gasoline type vehicles. Emission measurements on a chassis dynamometer were carried out. The purpose of these measurements was to compare the emissions of CO, CO2, NOx, THC, PM, lubricant-SOF and PAH from one diesel and one gasoline type vehicle using biodegradable lubricants and conventional lubricants. This paper describes the results of the experiments with the diesel type vehicle only. Lubricant consumption and fuel consumption are other important parameters that have been evaluated during the experiments. Both vehicle types were operated on conventional crude oil based fuels and alternative fuels. The diesel vehicle was operated on conventional diesel fuel from a Danish fuel station, low sulfur diesel from Sweden and biodiesel, which was bought at a fuel station in Germany.
Technical Paper

Analysis of UHC Emission from a Natural Gas SI Engine Using Fast Response FID and a Heat Release Model

2001-09-24
2001-01-3533
Lean burn operation is often used for improving the efficiency of SI engines. However, as a draw back, this method leads to a higher emissions of Unburned Hydro-Carbons, UHC, compared to stoichiometric combustion. In order to gain a better understanding of what is causing the higher UHC emission at lean burn condition, engine experiments have been carried out on a four-cylinder natural gas fueled SI engine. The concentration of UHC in the exhaust manifold and the HC concentration in the vicinity of the spark plug have been measured during the experiments using a Fast Response FID (FFID) analyzer. Using a model describing the outflow from the cylinder during the exhaust stroke and the measured UHC concentration in the manifold near the exhaust valve, the UHC emissions from the individual cycles have been determined. The investigation showed that under lean burn conditions, cycle by cycle variation had a significant importance on the total UHC emission from the engine.
Technical Paper

Hydrocarbon Emission from Combustion of Mixtures of Natural Gas and Hydrogen Containing Producer Gas in a SI Engine

2001-09-24
2001-01-3532
Engine experiments have been conducted on a gas fueled SI engine. The engine was fueled with natural gas and mixtures of natural gas and hydrogen containing producer gas in order to examine the effect of addition of producer gas on the combustion process and the engine-out emissions. The experiments showed that addition of producer gas decreased the UHC emission at conditions leaner than λ=1.40. The CO emission was increased by addition of producer gas. This was mainly caused by unburned fuel CO from the producer gas. No effect of producer gas on the NOx emission was detected. Formaldehyde, which is suspected to cause odor problems from natural gas fired engine based power plants, was measured using FTIR. The investigation showed that the formaldehyde emission was decreased significantly by addition of producer gas to natural gas.
Technical Paper

Experiments with Wood Gas Engines

2001-09-24
2001-01-3681
The utilisation of producer gas - from thermal gasification of biomass - as a fuel for spark ignition gas engines is of vital importance to the ongoing effort of making biomass gasification a commercially feasible technology. Tests have been carried out with a 1.1 litre four-cylinder natural aspirated SI engine in conjunction with a two-stage gasifier with a nominal thermal input of 100 kW. The fuel-gas is produced from wood chips in order to get a CO2 neutral fuel for combined heat and power production. The producer gas has a very low tar and particulate content and high hydrogen content. As the gasifier was operated with varying fuel properties, engine tests were made with different fuel-gas compositions. The engine tests showed that producer gas has a power and efficiency advantage compared to natural gas when operating the engine at lean burn conditions. The engine was operated at air/fuel ratios varying from stoichiometric to extremely lean burn (λ>3).
Technical Paper

A Three-Zone Heat Release Model for Combustion Analysis in a Natural Gas SI Engine. -Effects of Crevices and Cyclic Variations on UHC Emissions

2000-10-16
2000-01-2802
A thermodynamic analysis based on a pressure-time history measured during the combustion in a SI engine is a commonly used tool used for analyzing the combustion process. Both one-zone and two-zone models have been applied for this purpose. One of the major sources of the emission of unburned hydrocarbons from SI engines is the presence of crevices in the combustion chamber where a part of the unburned fuel-air mixture is trapped during the compression and the combustion. In this paper a three-zone heat release model including the effect of crevices is presented. The model is based on a thermodynamic analysis of three connected zones consisting of burned gas, unburned gas and gas trapped in crevices. Engine experiments have been carried out on a natural gas SI engine. The results from these experiments have been analyzed by the model.
Technical Paper

Hydrocarbon Emissions from a SI Engine Using Different Hydrogen Containing Gaseous Fuels

2000-10-16
2000-01-2824
Experiments have been conducted on a gas fueled spark ignition engine using natural gas and two hydrogen containing fuels. The hydrogen containing fuels are Reformulated Natural Gas (RNG) and a mixture of 50% (Vol.) natural gas and 50% (Vol.) producer gas. The producer gas is a synthetic gas with the same composition as a gas produced by gasification of biomass. The hydrocarbon emission, measured as the percentage of hydrocarbons in the fuel, which passes unburned through the engine, was for the mixture of natural gas and producer gas up to 50% lower than the UHC emissions using natural gas as fuel. The UHC emission from the experiments using reformulated natural gas was 15% lower at lean conditions. Furthermore, both hydrogen-containing fuels have a leaner lean burn limit than natural gas. The combustion processes from the experiments have been analyzed using a three-zone heat release model, which is taking the effect of crevices into account.
X