Display:

Results

Viewing 1 to 6 of 6
2017-03-28
Journal Article
2017-01-0641
Stephen J. Charlton, Charles E. Price, Jeff Rogers, James W.G. Turner, Roshan S. Wijetunge, William Anderson
Abstract The paper describes a completely new approach to fully variable valve actuation (FVVA), which allows almost unlimited continuously variable control of intake and exhaust valve opening and closing events, and duration without the use of a camshaft. DigitalAir replaces conventional poppet valves with horizontally actuated valves located directly above the combustion deck of the cylinder head, which open and close a number of slots connecting the cylinder with the intake and exhaust ports, Figure 1. The stroke of the valves to provide the full flow area is approximately 25% of the stroke of the equivalent poppet valve, thus allowing direct electrical actuation with very low power consumption. This design arrangement also avoids the risk of poppet valve to piston collision, or the need for cut-outs in the piston crown, since the valves do not open into the cylinder.
2017-03-28
Journal Article
2017-01-0635
Guy Babbitt, Jeff Rogers, Kristina Weyer, Drew Cohen, Stephen Charlton
Abstract This paper provides an overview of the analysis and design of the DigitalAir™ camless valve train including the architecture and design of the valve and head; the details of the electric valve actuator, and the flow characteristics of the valves and resulting charge motion in a motoring engine. This valve train is a completely new approach to fully variable valve actuation (FVVA), which allows almost unlimited continuously variable control of intake and exhaust valve timing and duration without the use of a camshaft. This valve train replaces conventional poppet valves with horizontally actuated valves located above the combustion deck. As the valves move, they open and close a number of slots connecting the cylinder with the intake and exhaust ports. The valve stroke necessary to provide the full flow area is approximately 25% of the stroke of the equivalent poppet valve, thus allowing direct electrical actuation with very low power consumption.
2013-09-08
Journal Article
2013-24-0094
Donald Stanton, Stephen Charlton, Phani Vajapeyazula
The world-wide commercial vehicle industry is faced with numerous challenges to reduce oil consumption and greenhouse gases, meet stringent emissions regulations, provide customer value, and improve safety. This work focuses on the new U.S. regulation of greenhouse gas (GHG) emissions from commercial vehicles and diesel engines and the most likely technologies to meet future anticipated standards while improving transportation freight efficiency. In the U.S., EPA and NHTSA have issued a joint proposed GHG rule that sets limits for CO2 and other GHGs from pick-up trucks and vans, vocational vehicles, semi-tractors, and heavy duty diesel engines. This paper discusses and compares different technologies to meet GHG regulations for diesel engines based on considerations of cost, complexity, real-world fidelity, and environmental benefit.
2011-09-13
Technical Paper
2011-01-2189
Jeffrey Seger, Long-Kung Hwang, Josh Shao, Thomas Grana, Steve Charlton
The paper describes a process for the design of fuel-efficient diesel engine powertrains for heavy-duty commercial vehicles. A System Engineering approach is described that delivers optimal fuel efficiency by taking into account interactions among engine, exhaust aftertreatment, and vehicle systems. The primary objective of this approach is to develop a properly integrated system that delivers the lowest total cost of ownership (TCO) while maintaining high sociability, reliability, and performance. The paper will also discuss the role of competitive analysis and benchmarking, in-use duty-cycle analysis, design, simulation and final confirmation tests. System optimization is performed at critical steps in the process for engine hardware, control software and calibration, aftertreatment, engine accessories, powertrain components and vehicle interfaces.
2010-10-05
Journal Article
2010-01-1934
Steve Charlton, Thomas Dollmeyer, Thomas Grana
The paper will discuss the design and development of heavy-duty diesel engines to meet the US EPA 2010 on-highway standards - 0.2 g/HP-hr NOx and 0.01 g/HP-hr particulate matter (PM). In meeting these standards a combination of in-cylinder control and aftertreatment control for both NOx and particulate has been used. For NOx control, a combination of cooled exhaust gas recirculation (EGR) and selective catalytic reduction (SCR) is used. The SCR catalyst uses copper zeolite to achieve high levels of NOx conversion efficiency with minimal ammonia slip and unparalleled thermal durability. For particulate control, a diesel particulate filter (DPF) with upstream oxidation catalyst (DOC) is used. While the DPF may be actively regenerated when required, it operates predominantly with passive regeneration - enabled by the high NOx levels between the engine and the DPF, associated with high efficiency SCR systems and NO₂ production across the DOC.
2005-11-01
Technical Paper
2005-01-3628
Stephen J. Charlton
The modern diesel engine is used around the world to power applications as diverse as passenger cars, heavy-duty trucks, electrical power generators, ships, locomotives, agricultural and industrial equipment. The success of the diesel engine results from its unique combination of fuel economy, durability, reliability and affordability - which drive the lowest total cost of ownership. The diesel engine has been developed to meet the most demanding on-highway emission standards, through the introduction of advanced technologies such as: electronic controls, high pressure fuel injection, and cooled exhaust gas recirculation. The standards to be introduced in the U.S. in 2007 will see the introduction of the Clean Diesel which will achieve near-zero NOx and particulate emissions, while retaining the customer values outlined above.
Viewing 1 to 6 of 6