Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Innovative Graduate Program in Mechatronics Engineering to Meet the Needs of the Automotive Industry

2010-10-19
2010-01-2304
A new inter-disciplinary degree program has been developed at Lawrence Technological University: the Master of Science in Mechatronic Systems Engineering Degree (MS/MSE). It is one of a few MS-programs in mechatronics in the U.S.A. today. This inter-disciplinary program reflects the main areas of ground vehicle mechatronic systems and robotics. This paper presents areas of scientific and technological principles which the Mechanical Engineering, Electrical and Computer Engineering, and Math and Computer Science Departments bring to Mechatronic Systems Engineering and the new degree program. New foundations that make the basis for the program are discussed. One of the biggest challenges was developing foundations for mechanical engineering in mechatronic systems design and teaching them to engineers who have different professional backgrounds. The authors first developed new approaches and principles to designing mechanical subsystems as components of mechatronic systems.
Technical Paper

Vibration Analysis vs. Vibration Control

2005-05-16
2005-01-2548
Car manufacturing companies and their suppliers allocate significant human and financial resources to NVH-related R&D. While the most advanced instrumentation and analytical techniques are used for these activities, the incremental improvements of NVH are rather small due to extreme complexity of the vehicle systems, to accumulating manufacturing uncertainties, and to many contradictory constraints for design and modifications of the vehicle components and subsystems. NVH improvement by using conceptual approaches for vibration and noise control without in-depth study of mechanisms generating objectionable noise and vibration effects in a particular component or subsystem is often considered as an inferior approach and is used only in critical launch and warranty situations. Development of such vibration and/or noise control “patches” is often relegated to suppliers.
Technical Paper

Analysis and Reduction of Rattling in Power Transmission Systems

2000-03-06
2000-01-0032
Rattling in the inevitable clearances between engaging teeth of mechanical power transmission components, such as gears, gear couplings and clutches, etc., is becoming a more and more important issue, especially for automotive applications. An extensive research effort in this area is mostly dedicated to modeling of complex nonlinear processes that develop after the tooth separation occurs, or to experimental studies of these processes. The available abatement techniques for the rattling noise are expensive while not providing desirable noise reduction results. The paper presents a criterial condition for opening of clearances derived for a simplified model and clearly showing importance of various design parameters on possibility of commencement of the rattling process. Also, a novel rattling noise abatement technique is described, based on incorporating simple means for prolongation of the impact interactions between the co-impacting engaging teeth.
Technical Paper

Noise Analysis of Automotive Alternators

1999-05-17
1999-01-1712
An extensive experimental study of noise generating mechanisms of two production models of automotive alternators is presented. It was established that aerodynamic noise (generated by cooling fans) is dominating at high speeds (above 3,000 rpm), while electromagnetic noise is the most intensive at low rpm. Two directions of noise reduction are proposed and validated: reduction of noise levels generated by alternators to be achieved by using axial flow fans for cooling instead of presently used bladed discs, and radical reduction of operating speed of alternators by using variable transmission ratio accessory drives.
X