Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

A Methodology for the Fast Evaluation of the Effect of Ash Aging on the Diesel Particulate Filter Performance

2009-04-20
2009-01-0630
Establishing a certain maintenance-free time period regarding modern diesel exhaust emission control systems is of major importance nowadays. One of the most serious problems Diesel Particulate Filter (DPF) manufacturers face concerning system's durability is the performance deterioration due to the filter aging because of the accumulation of the ash particles. The evaluation of the effect of the ash aging on the filter performance is a time and cost consuming task that slows down the process of manufacturing innovative filter structures and designs. In this work we present a methodology for producing filter samples aged by accumulating ash produced by the controlled pyrolysis of oil-fuel solutions. Such ash particles bear morphological (size) and compositional similarity to ash particles collected from engine aged DPFs. The ash particles obtained are compared to those from real engine operation.
Journal Article

Micro-Simulation of NO-NO2 Transport and Reaction in the Wall of a Catalyzed Diesel Particulate Filter

2008-04-14
2008-01-0442
Catalyzed Diesel Particulate Filters (CDPFs) continue to be an important emission control solution and are now also expanding to include additional functionalities such as gas species oxidation (such as CO, hydrocarbons and NO) and even storage phenomena (such as NOx and NH3 storage). Therefore an in depth understanding of the coupled transport - reaction phenomena occurring inside a CDPF wall can provide useful guidance for catalyst placement and improved accuracy over idealized effective medium 1-D and 0-D models for CDPF operation. In the present work a previously developed 3-D simulation framework for porous materials is applied to the case of NO-NO2 turnover in a granular silicon carbide CDPF. The detailed geometry of the CDPF wall is digitally reconstructed and micro-simulation methods are used to obtain detailed descriptions of the concentration and transport of the NO and NO2 species in the reacting environment of the soot cake and the catalyst coated pores of the CDPF wall.
Journal Article

Catalytic Nano-structured Materials for Next Generation Diesel Particulate Filters

2008-04-14
2008-01-0417
The increasing need for controlled diesel engine emissions and the strict regulations in the abatement of diesel exhaust products lead to an ever increasing use of Diesel Particulate Filters (DPFs) in OEM applications. The periodic regeneration of DPFs (oxidation of soot particles) demands temperatures that rarely appear during engine operation. It is therefore necessary to employ direct or indirect catalytic measures. In the present work, the development and synthesis via aerosol-based routes, of nanostructured base metal oxides for direct soot oxidation, along with their characterization and their evaluation in engine exhaust is described. The synthesized powders were characterized with respect to their phase composition and morphology. XRD, SEM and TEM analysis have shown the nanostructured character of the powders, while Raman spectroscopy was employed for the preliminary characterization of the materials surface chemistry.
Technical Paper

Advanced Catalyst Coatings for Diesel Particulate Filters

2008-04-14
2008-01-0483
Novel catalytic coatings with a variety of methods based on conventional and novel synthesis routes are developed for Diesel Particulate Filters (DPFs). The developed catalytic composition exhibits significant direct soot oxidation as evaluated by reacting mixtures of diesel soot and catalyst powders in a thermogravimetric analysis apparatus (TGA). The catalyst composition was further deposited on oxide and non-oxide porous filter structures that were evaluated on an engine bench with respect to their filtration efficiency, pressure drop behavior and direct soot oxidation activity under realistic conditions. The effect of the catalyst amount on the filtration efficiency of non-oxide filters was also investigated. Evaluation of the indirect soot oxidation was conducted on non-oxide catalytic filters coated with precious metal.
Technical Paper

Improving of the Filtration and Regeneration Performance by the Sic-DPF with the Layer Coating of PM Oxidation Catalyst

2008-04-14
2008-01-0621
DPF has become widely known as an indispensable after-treatment component for the purification of the particulate matter in the diesel exhaust gas. But, in order to correspond to further regulation strengthening such as carbon dioxide emission regulation and number-based particulate matter emission regulation, it must be necessary also for DPF to keep improving its performance. In this study, it was examined how to improve both the filtration efficiency and the oxidation efficiency of PM regarding the catalyzed DPF. SiC-made 10mil/300cpsi-OctoSquare asymmetric cell structure was chosen for the DPF substrate and PM oxidation catalyst was coated on the surface of the filter wall as a layer with the device of the coating method. As a result, it was found that the layer coated DPF has advantage on the filtration efficiency without soot accumulation and efficiency was similar to an uncoated one with 0.1 g/l soot loading.
Technical Paper

A Mobile Laboratory for On-board and Ambient Level Emissions Measurement

2008-04-14
2008-01-0756
Although engine emissions per vehicle have been reduced for twenty years with technical developments in the fields of engine, after-treatment technologies and fuels the urban air pollution problem still exists in many cities around the world. Forthcoming emission regulations will require further development of new complex technologies to reach low emissions. On-board driving assessment of such technologies offers significant advantages in the development phase of novel emission reduction. In this paper we present the design, development and commissioning of a mobile laboratory able to monitor on-board along the exhaust line gaseous and particulate pollutants as well as measure these pollutants in the ambient environment around the vehicle.
Technical Paper

Multi-Instrumental Assessment of Diesel Particulate Filters

2007-04-16
2007-01-0313
As different Diesel Particulate Filter (DPF) designs and media are becoming widely adopted, research efforts in the characterization of their influence on particle emissions intensify. In the present work the influence of a Diesel Oxidation Catalyst (DOC) and five different Diesel Particulate Filters (DPFs) under steady state and transient engine operating conditions on the particulate and gaseous emissions of a common-rail diesel engine are studied. An array of particle measuring instrumentation is employed, in which all instruments simultaneously measure from the engine exhaust. Each instrument measures a different characteristic/metric of the diesel particles (mobility size distribution, aerodynamic size distribution, total number, total surface, active surface, etc.) and their combination assists in building a complete characterization of the particle emissions at various measurement locations: engine-out, DOC-out and DPF-out.
Technical Paper

Study on Catalyzed-DPF for Improving the Continuous Regeneration Performance and Fuel Economy

2007-04-16
2007-01-0919
It is a big challenge how to satisfy both the purification of exhaust gas and the decrease of fuel penalty, that is, carbon-dioxide emission. Regarding the Diesel Particulate Filter (DPF) applied in the diesel after-treatment system, it must be effective for lowering the fuel penalty to prolong the interval and reduce the frequency of the DPF regeneration operation. This can be achieved by a DPF that has high Particulate Matter (PM) mass limit and high PM oxidation performance that is enough to regenerate the DPF continuously during the normal running operation. In this study, the examination of the pore structure of the wall of a DPF that could expand the continuous regeneration region in the engine operation map was carried out. Several porous materials with a wide range of pore structure were prepared and coated with a Mixed Oxide Catalyst (MOC). The continuous regeneration performance was evaluated under realistic conditions in the exhaust of a diesel engine.
Technical Paper

Wall-scale Reaction Models in Diesel Particulate Filters

2007-04-16
2007-01-1130
Following the successful market introduction of diesel particulate filters (DPFs), this class of emission control devices is expanding to include additional functionalities such as gas species oxidation (such as CO, HC and NO), storage phenomena (such as NOx and NH3 storage) to the extent that we should today refer not to DPFs but to Multifunctional Reactor Separators. This trend poses many challenges for the modeling of such systems since the complexity of the coupled reaction and transport phenomena makes any direct general numerical approach to require unacceptably high computing times. These multi-functionalities are urgently needed to be incorporated into system level emission control simulation tools in a robust and computationally efficient manner. In the present paper we discuss a new framework and its application for the computationally efficient implementation of such phenomena.
Technical Paper

Soot Oxidation Kinetics in Diesel Particulate Filters

2007-04-16
2007-01-1129
Direct catalytic soot oxidation is expected to become an important component of future diesel particulate emission control systems. The development of advanced Catalytic Diesel Particulate Filters (CDPFs relies on the interplay of chemistry and geometry in order to enhance soot-catalyst proximity. An extensive set of well-controlled experiments has been performed to provide direct catalytic soot oxidation rates in CDPFs employing small-scale side-stream sample exposure. The experiments are analyzed with a state-of-the-art diesel particulate filter simulator and a set of kinetic parameters are derived for direct catalytic soot oxidation by fuel-borne catalysts as well as by catalytic coatings. The influence of soot-catalyst proximity, on catalytic soot oxidation is found to be excellently described by the so-called Two-Layer model, developed previously by the authors.
Technical Paper

Application of Digital Material Methods to Silicon Carbide Diesel Particulate Filters

2007-04-16
2007-01-1131
In previous work an advanced micro-scale simulation framework for DPF materials has been presented. This development comes as DPF developers continue to seek competitive advantage at the material level and the availability of computing power is improving to the point that micro-scale simulation may be considered for routine application for DPF materials optimization. The aim of the present work is to show an in-depth application of advanced micro-scale simulation methods to silicon carbide DPF materials currently in widespread use. The quality and utility of these simulations, targeting filtration and soot oxidation phenomena in SiC DPF material, is evaluated and the potential for the use of such advanced simulation technology is assessed in a materials development context.
Technical Paper

A Selective Particle Size Sampler Suitable for Biological Exposure Studies of Diesel Particulate

2006-04-03
2006-01-1075
The objective of this study is the design, construction and evaluation of a Selective Particle Size (SPS) sampler able to provide continuous delivery of diesel soot particles of specific size ranges. The design of the sampler combines principles of aerosol transport phenomena and separation technologies. Particles smaller than a given size are removed from the exhaust by diffusional deposition, while removal of particles above a given size is achieved by low pressure inertial impaction. The main application of the developed sampler is the exposure of biological samples such as cell and tissue cultures to selected sizes of diesel exhaust particles. By applying the SPS sampler to diesel exhaust it is demonstrated that it is possible to obtain two aerosol streams with widely separated particle size distributions (of nanometric dimensions), suitable for biological exposure studies.
Technical Paper

Digital Materials Methods for DPF Development

2006-04-03
2006-01-0260
Diesel Particulate Filter (DPF) material design based on a traditional design of experiments approach can be very time consuming and costly, due to the high number of tests and prototype material samples required. This provides an opportunity for the application of simulation tools at the microscopic scale, which are recently seeing increasing use in DPF material studies. The current work describes a framework for such micro-scale simulations based on high fidelity digital representations of the porous materials of interest, on the rationale that the performance of the latter materials depends strongly on the coupling of different physicochemical phenomena occurring at the microscopic scale where material morphology is important.
Technical Paper

A Multi-Reactor Assembly for Screening of Diesel Particulate Filters

2006-04-03
2006-01-0874
In this paper a fast DPF screening procedure is proposed using small-scale filter samples of different technologies in a well-controlled environment but under realistic engine exhaust conditions. The DPF samples are evaluated in a specially built Multi-Reactor Assembly (MRA) with respect to their flow resistance, filtration efficiency, soot loading behavior, soot oxidation behavior, as well as their ash induced ageing behavior.
Technical Paper

Catalytic Filter Systems with Direct and Indirect Soot Oxidation Activity

2005-04-11
2005-01-0670
Diesel Particulate Filters (DPFs) need to be periodically regenerated in order to achieve efficient and safe vehicle operation. Under typical diesel exhaust conditions, this invariably requires the raising of the exhaust gas temperature by active means, up to the point that particulate (soot) oxidation can be self-sustained in the filter. In the present work the development path of an advanced catalytic filter technology is presented. Full scale optimized Catalytic Diesel Particulate Filters (CDPFs) are tested in the exhaust of a light-duty modern diesel engine in line with a Diesel Oxidation Catalyst (DOC). The management of the DOC-CDPF emission control system is facilitated by a virtual soot sensor in order to ensure energy-efficient operation of the emission control system.
Technical Paper

Study on the Filter Structure of SiC-DPF with Gas Permeability for Emission Control

2005-04-11
2005-01-0578
The pore structure of DPF (Diesel Particulate Filter) is one of the key factors in contributing the fuel consumption and the emission control performance of a vehicle. The pressure loss of mini samples (1 in. in diameter, 2 in. in length) with various pore structures was measured at relatively low filtration velocity (< 5 cm/sec). Then the obtained data were evaluated by using an index of “permeability”. As a result, among the parameters which characterize the pore structure, it was found that the size of the pore diameter and the sharpness of pore distribution were the most contributing factors in reducing pressure loss which in turn is related to the fuel consumption performance when the cell structure was fixed. On the other hand, it was found that the gas permeability was not affected significantly by any parameter when the catalyst was coated because the coating caused a broadening of the pore distribution.
Technical Paper

Study of a Sintered Metal Diesel Particulate Trap

2005-04-11
2005-01-0968
This paper describes work supporting the development of a new Diesel particulate trap system for heavy duty vehicles based on porous sintered metal materials that exhibit interesting characteristics with respect to ash tolerance. Experimental data characterizing the material (permeability, soot and ash deposit properties) are obtained in a dedicated experimental setup in the side-stream of a modern Diesel engine as well as in an accelerated ash loading rig. System level simulations coupling the new media characteristics to 3-D CFD software for the optimization of complete filter systems are then performed and comparative assessment results of example designs are given.
Technical Paper

Progress in Diesel Particulate Filter Simulation

2005-04-11
2005-01-0946
DPF design, system integration, regeneration control strategy optimization and ash ageing assessment, based on a traditional design of experiments approach becomes very time consuming and costly, due to the high number of tests required. This provides a privileged window of opportunity for the application of simulation tools and hence simulation is increasingly being used for the design of exhaust after-treatment systems with a Diesel Particulate Filter (DPF). DPF behavior depends strongly on the coupling of physico-chemical phenomena occurring over widely disparate spatial and temporal scales and a state-of-the-art simulation approach recognizes and exploits these facts introducing certain assumptions and/or simplifications to derive an accurate but computationally tractable DPF simulation tool, for the needs of industrial users.
Technical Paper

The Diesel Exhaust Aftertreatment (DEXA) Cluster: A Systematic Approach to Diesel Particulate Emission Control in Europe

2004-03-08
2004-01-0694
The DEXA Cluster consisted of three closely interlinked projects. In 2003 the DEXA Cluster concluded by demonstrating the successful development of critical technologies for Diesel exhaust particulate after-treatment, without adverse effects on NOx emissions and maintaining the fuel economy advantages of the Diesel engine well beyond the EURO IV (2000) emission standards horizon. In the present paper the most important results of the DEXA Cluster projects in the demonstration of advanced particulate control technologies, the development of a simulation toolkit for the design of diesel exhaust after-treatment systems and the development of novel particulate characterization methodologies, are presented. The motivation for the DEXA Cluster research was to increase the market competitiveness of diesel engine powertrains for passenger cars worldwide, and to accelerate the adoption of particulate control technology.
Technical Paper

Microstructural Aspects of Soot Oxidation in Diesel Particulate Filters

2004-03-08
2004-01-0693
Diesel Particulate Filter (DPF) behavior depends strongly on the microstructural properties of the deposited soot aggregates. In the past the issue of the growth process of soot deposits in honeycomb ceramic filters has been addressed under non-reactive conditions and the influence of the filter operating conditions has been defined in terms of the dimensionless Peclet number. In the present work appropriate soot cake microstructural descriptors are studied under reactive conditions for different oxidation modes. To this end the effect of deposit microstructure on the soot oxidation kinetics is investigated. Different microstructural models for the reacting soot deposit are examined in a unified fashion and a generalized constitutive equation is obtained, describing several modes of microstructure evolution (shrinking layer, shrinking density, discrete columnar and continuous columnar).
X