Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Controlling Lubricant-Derived Phosphorous Deactivation of the Three-Way Catalysts Part 2: Positive Environmental Impact of Novel ZDP Technology

2010-10-25
2010-01-2257
Prior technical work by various OEMs and lubricant formulators has identified lubricant-derived phosphorus as a key element capable of significantly reducing the efficiency of modern emissions control systems of gasoline-powered vehicles ( 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ). However, measuring the exact magnitude of the detriment is not simple or straightforward exercise due to the many other sources of variation which occur as a vehicle is driven and the catalyst is aged ( 1 ). This paper, the second one in the series of publications, examines quantitative sets of results generated using various vehicle and exhaust catalyst testing methodologies designed to follow the path of lubricant-derived phosphorous transfer from oil sump to exhaust catalytic systems ( 1 ).
Journal Article

Controlling Lubricant Derived Phosphorous Deactivation of the Three Way Catalysts Part 1: Assessments of Various Testing Methodologies

2010-05-05
2010-01-1544
Prior work by various OEMs has identified the ability of phosphorus-containing compounds to interfere with the efficiency of modern emissions control systems utilized by gasoline-powered vehicles. Considering the growing societal concerns about ecological effects of exhaust emissions, greenhouse gas emissions and related global climatic changes, it becomes desirable to examine the effect of reduced phosphorous (P) deposits in various vehicle makes, models and types of service, over the lifetime of a vehicle's operation. This paper assesses advantages and disadvantages of various methods to examine the path of P transfer throughout exhaust catalytic systems. Test types discussed include examples of bench testing focusing on catalyst compatibility, dyno mileage accumulation and field trial examinations.
Technical Paper

The Current Development of Nanofluid Research

2005-04-11
2005-01-1929
It has been shown that the addition of a small amount of nanoparticles into a fluid results in anomalous increase in the thermal conductivity of the mixture, and the resulting nanofluid may provide better overall thermal management and better lubrication in many applications, such as heat transfer fluids, engine oils, transmission fluids, gear oils, coolants and other similar fluids and lubricants. The potential benefits of this technology to the automotive and related industries would be more efficient engines, reduced size and weight of the cooling and propulsion systems, lowered operating temperature of the mechanical systems, and increased life of the engine and other mechanical systems. The new mechanisms for this phenomenon of anomalous thermal conductivity increase have been proposed. The heat transfer properties of a series of graphite nanofluids were presented, and the experimental results were compared with the conventional heat transfer theory for pure liquids.
Technical Paper

Contribution of Oil Traction to Diesel Engine Cam Galling

2001-09-24
2001-01-3552
Heavy Duty diesel engines typically use roller followers in contact with the cam to reduce friction and accommodate high Hertzian stresses. When the rolling contact slips into sliding, cam galling can occur that may lead to major cam failures. Oil traction has been identified as a possible source to cause slipping. In this study, oil traction was first measured in a Mini Traction Machine (MTM). The results were then validated by a series of engine tests to show that the measured oil traction correlated with the occurrence of cam galling. Finally, the MTM was used to evaluate various engine oil formulations. It is concluded that some advanced base oils, if not properly compensated by the additive package, exhibit dangerously low oil traction. Oil traction needs to be part of the oil formulation considerations.
Technical Paper

Effect of Soot Loading on the Thermal Characteristics of Diesel Engine Oils

2001-05-14
2001-01-1714
When compared with new oil, used diesel engine oils exhibited thermal conductivity that increases as the concentration of soot increases. The magnitude of the effect depends on the oil composition, and on the size and dispersion of the soot particles. Although soot in engine oil is generally deleterious to engine performance from the standpoint of wear and deposits, no negative effects were observed on the thermal performance of the oil itself; indeed, even slight positive effects are expected for oils that maintain soot in stable dispersion. Therefore, the thermal challenge for engine oils in diesel engines that use exhaust gas recirculation will be to prevent soot deposition on engine surfaces.
Technical Paper

Nanofluids for Vehicle Thermal Management

2001-05-14
2001-01-1706
Applying nanotechnology to thermal engineering, ANL has addressed the interesting and timely topic of nanofluids. We have developed methods for producing both oxide and metal nanofluids, studied their thermal conductivity, and obtained promising results: (1) Stable suspensions of nanoparticles can be achieved. (2) Nanofluids have significantly higher thermal conductivities than their base liquids. (3) Measured thermal conductivities of nanofluids are much greater than predicted. For these reasons, nanofluids show promise for improving the design and performance of vehicle thermal management systems. However, critical barriers to further development and application of nanofluid technology are agglomeration of nanoparticles and oxidation of metallic nanoparticles. Therefore, methods to prevent particle agglomeration and degradation are required.
X