Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Journal Article

Design of an Electric Variable CAM Phaser Controller

2012-04-16
2012-01-0433
As the emissions and fuel economy standards for internal combustion engines become ever more stringent, a variety of valvetrain control methods have been developed to improve engine performance. One of these is camshaft (CAM) phasing, which controls the angular position of the CAM relative to the crankshaft allowing changes to the timing of valve lift events. This method has demonstrated advantages including broadening the engine torque curve, increasing peak power at higher RPM, reducing hydrocarbon and NOx emissions, and improving fuel economy. In addition, external EGR systems can be eliminated because internal cylinder dilution control can be achieved by varying CAM timing. Current implementations of CAM phasing use oil-pressure-based electro-mechanical systems. While these systems are relatively low cost and have proven to be robust, they have disadvantages at low oil temperatures and pressures (such as during cranking events).
Technical Paper

Controller for Rapid Development of Advanced Mode Combustion Algorithms using Cylinder Pressure Feedback

2008-10-20
2008-21-0015
Worldwide regulatory demands to reduce emissions of greenhouse gases and other airborne pollutants are leading to significant changes in internal combustion engines. Many engine subsystems such as fuel injection, valvetrain, turbochargers and EGR, are being changed to address these demands. Additionally, advanced combustion modes such as HCCI are being pursued to address the key shortcomings of today's gasoline and diesel engines. Cylinder pressure based control is an enabling technology to the development and application of advanced engine subsystems and a key control element for advanced combustion modes. This paper describes a tool for rapid development of closed-loop cylinder pressure based algorithms. The Cylinder Pressure Development Controller (CPDC) is an affordable, automotive grade package containing a unique architecture enabling real-time, next engine cycle combustion feedback control.
Technical Paper

Design of an Automotive Grade Controller for In-Cylinder Pressure Based Engine Control Development

2007-04-16
2007-01-0774
This paper describes a new tool to capture cylinder pressure information, calculate combustion parameters, and implement control algorithms. There are numerous instrumentation and prototyping systems which can provide some or all of this capability. The Cylinder Pressure Development Controller (CPDC) is unique in that it uses advanced high volume automotive grade circuitry, packaging, and software methodologies. This approach provides insight regarding the implementation of cylinder pressure based controls in a production engine management system. A high performance data acquisition system is described along with a data reduction technique to minimize data processing requirements. The CPDC software architecture is discussed along with model-based algorithm development and autocoding. Finally, CPDC calculated combustion parameters are compared with those from a well established combustion analysis system and thermodynamic simulations.
X