Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Efficiency Analysis of Multi-Mode Passenger Car Transmission Concepts Featuring a VariGlide® CVT

2016-04-05
2016-01-1108
A comparison of overall transmission efficiency, under normal vehicle operating conditions, is made between a production multi-mode CVT and a prototype multi-mode VariGlide CVT. The comparison is made through a combination of test data and simulation. A production passenger car with a stock multi-mode belt-type CVT was tested and evaluated for overall efficiency. Similarly a multi-mode VariGlide CVT had been previously built, tested and modeled. Through a combination of test data and model simulation an optimized configuration of the Variglide transmission was compared to the test results of the production transmission. The results show that when the VariGlide equipped transmission is splitting power between the VariGlide CVT and the mechanical path, significant improvements in overall transmission and vehicle efficiency can be achieved versus the stock CVT.
Technical Paper

Progress in Demonstration Prototypes Using the Continuously Variable Planetary Technology in a C-Class RWD Car and a Fork Lift Truck

2015-04-14
2015-01-1104
In order to introduce Dana's Variglide Continuously Variable Planetary (CVP) technology to the mobility industry, Dana has produced demonstrator transmissions for use in a rear wheel drive C-class car and in a fork lift truck. The intention is to illustrate how the CVP can be combined with conventional transmission technology to produce either a continuously variable transmission with the ratio range comparable to that of the latest step ratio transmissions, or used in a simple IVT configuration for off-highway applications. The co-axial design of the CVP allows it to package well into current drivetrain solutions. The ratio control of the device is fast, precise, and stable and the CVP does not require high power consumption for clamping. Multiple power flow configurations of the CVP are shown to blend well with current conventional transmission technology as well as future hybrid configurations.
X